✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)特征提取网络与车道线检测 本文将IBN网络结构和自适应调节自身感受野的SKNet网络引入到特征提取网络,并使用堆叠沙漏网络搭建了预测关键点模块,实现了基于关键点实例分割的车道线检测。这样的方法解决了由图像外观变化及使用固定大小卷积核提取车道线特征时导致的车道线检测精度降低的问题。在车道线拟合和跟踪部分,首先基于DBSCAN算法将车道线检测算法输出的相似点进行聚类,使用RANSAC算法拟合抛物线模型,然后基于卡尔曼滤波算法进行车道线跟踪。算法在Tu Simple数据集和实车实验平台上分别进行定量和定性验证,验证了其有效性
。
(2)深度学习的视觉三维检测和跟踪算法框架 建立了基于深度学习的视觉三维检测和跟踪算法框架。提出了一种有效提取多尺度特征的空洞特征金字塔网络结构,使得每个特征图同时拥有深层的语义信息和浅层的边缘信息,从而解决了基于传统特征金字塔进行多尺度目标检测时存在小目标检测精度较低的问题。在特征回归网络预测车辆维度和横摆角的基础上,使用检测框之间的约束关系求解目标位置坐标。搭建目标运动状态预测网络对目标运动状态进行建模,并预测目标在下一帧中的位置得到目标运动特征。在获得预测目标位置的基础上,计算预测目标和当前时刻检测目标之间的交并比,得到几何相似度信息。依据距离远近对目标进行排序,然后用线性模型预测遮挡目标的位置,这样减少了由遮挡引起的错误匹配。根据特征相似度和几何相似度可以计算目标之间的相似度,最后使用加权二部匹配算法进行数据关联。建立目标运动状态修正网络对目标运动状态进行修正,从而得到目标跟踪结果
。
(3)视觉和雷达分布式信息融合算法框架 在前面研究的基础上,提出了视觉和雷达分布式信息融合算法框架。搭建了本车运动状态估计模型,在获得车辆侧向运动速度的基础上,对雷达目标运动状态进行运动补偿。对直道和弯道行驶路况,分别建立了辨识目标车辆所在车道位置关系的模型。针对雷达目标跟踪过程中观测噪声的未知且时变性引起的非线性滤波目标跟踪精度较低,甚至发散的问题,本文在平方根容积卡尔曼滤波的基础上,将Sage-Husa噪声统计估计器和渐消记忆指数加权方法相结合推导出适用于非线性系统的时变噪声统计估计器。使用椭圆形最近邻数据关联算法实现目标数据关联。将目标车辆的运动状态分为静止、同向运动、反向运动、起停和未分类五种形式,通过分析目标车运动状态转移机理,提出了一种基于时间窗的目标车运动状态分类方法。在序贯航迹关联的基础上,使用凸组合融合算法对视觉和雷达信息融合后的航迹状态进行估计。详细介绍了视觉和雷达的时间同步和空间对准原理和标定过程。通过搭载实车实验平台对算法进行验证
。
(4)基于图神经网络和循环神经网络的GPII-GRU轨迹预测算法框架 在视觉和雷达获得目标跟踪信息基础上,提出了基于图神经网络和循环神经网络的GPII-GRU轨迹预测算法框架。本文从图正则化和网络架构调整两方面提出解决使用堆叠多层图神经网络提取交通车辆之间交互特征过程中出现过平滑问题的方案。首先,在图神经网络中引入不改变网络架构、不增加额外参数的图正则化。然后,在堆叠多层图神经网络模块之间引入具有初始残差和恒等映射的残差网络模型,在一定程度上解决叠加多层图神经网络层出现的过平滑问题。在获得交通车辆之间交互特征的基础上,使用Seq2Seq序列预测模型中的双向GRU编码器提取历史序列轨迹特征,然后使用注意力机制和单向GRU解码器对每个交通车的未来运动轨迹进行预测。将本文提出的GPII-GRU轨迹预测算法在Apollo Scape Trajectory轨迹预测数据集上进行验证,实验结果表明,衡量轨迹预测精度性能指标的平均位移误差和最终位移误差均得到了显著性提高
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import numpy as np
from sklearn.preprocessing import MinMaxScaler
# 定义时间序列数据集
class TimeSeriesDataset(Dataset):
def __init__(self, sequences):
self.sequences = sequences
def __len__(self):
return len(self.sequences)
def __getitem__(self, index):
sequence, label = self.sequences[index]
return torch.Tensor(sequence), torch.Tensor(label)
# 定义GRU模型
class GRUModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(GRUModel, self).__init__()
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.gru(x)
out = self.fc(out[:, -1, :]) # 取最后一个时间步的输出
return out
# 数据预处理
def create_dataset(data, sequence_length):
dataset = []
for i in range(len(data) - sequence_length):
sequence = data[i:i + sequence_length]
label = data[i + sequence_length]
dataset.append((sequence, label))
return dataset
# 训练模型
def train_model(model, train_loader, epochs, criterion, optimizer):
model.train()
for epoch in range(epochs):
for sequences, labels in train_loader:
optimizer.zero_grad()
outputs = model(sequences)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 主程序
if __name__ == "__main__":
# 数据加载和预处理
data = np.load('data.npy')
scaler = MinMaxScaler(feature_range=(0, 1))
data_normalized = scaler.fit_transform(data.reshape(-1, 1)).flatten()
sequence_length = 10 # 序列长度
dataset = create_dataset(data_normalized, sequence_length)
train_size = int(0.8 * len(dataset))
train_dataset, test_dataset = dataset[:train_size], dataset[train_size:]
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 模型初始化
input_size = sequence_length
hidden_size = 50
num_layers = 2
output_size = 1
model = GRUModel(input_size, hidden_size, num_layers, output_size)
# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练
epochs = 20
train_model(model, train_loader, epochs, criterion, optimizer)
# 保存模型
torch.save(model.state_dict(), 'gru_model.pth')