✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 双电源开绕组永磁同步电机驱动系统的数学模型
为了研究双电源开绕组永磁同步电机驱动系统的控制方法,首先需要建立系统的数学模型。本文基于隔离直流母线供电的双两电平电压型逆变器的拓扑结构,采用内置式开绕组永磁同步驱动电机,并采用基于转子磁场定向的矢量控制架构。开绕组永磁同步电机的绕组结构具有两个独立的三相绕组,每个绕组由一个逆变器单独供电,这为双电源供电提供了基础。
在数学模型方面,本文详细分析了电机的电磁特性,包括电机的电压方程、磁链方程和转矩方程。通过这些方程,可以准确描述电机在不同工况下的动态行为。此外,本文还考虑了逆变器的开关特性,建立了逆变器的数学模型,包括开关函数和电压矢量的生成方法。通过将电机和逆变器的模型结合起来,可以全面描述整个驱动系统的动态特性。
为了验证模型的准确性,本文进行了仿真和实验验证。仿真结果显示,模型能够准确预测电机在不同工况下的动态响应,包括启动、加速、稳态运行等。实验结果也表明,模型的预测结果与实际测量结果高度一致,为后续的控制策略设计提供了可靠的理论基础。
(2) 电压矢量调制与双逆变器电压矢量分配
在电压矢量调制与双逆变器电压矢量分配方面,本文提出了几种优化策略,以充分发挥双逆变器的构型优势。首先,本文分析了双SVPWM(空间矢量脉宽调制)控制架构下不同调制方式组合对电流纹波的影响。研究表明,不同的调制方式组合会导致不同的电流纹波特性。为了获得较低的电流纹波,本文制定了双逆变器调制方式组合与切换策略。通过合理规划双逆变器零矢量的作用位置与合成方式,可以在获得较低电磁转矩与电流纹波的同时,减少单位SVPWM控制周期的逆变器桥臂动作次数,从而降低逆变器的开关损耗。
其次,本文提出了基于双逆变器电压矢量分配可行域的电压矢量分配策略。该策略明确了双SVPWM架构下电压矢量分配可行域边界的计算方法及其与功率分配的关系。通过基本矢量、饱和矢量、基本方向矢量等特殊电压矢量组合,实现了对电压矢量分配可行域的完全利用,充分发掘了双逆变器功率分配的潜力。这样,不仅可以精确执行功率分配指令,还能降低逆变器器件的开关频率与开关损耗。
(3) 电磁转矩与定子电流矢量控制
在电磁转矩与定子电流矢量控制方面,本文提出了基于最优化理论与斐波那契寻优的控制策略。首先,通过电压矢量最小幅值算法提供初始可行点,然后通过最优化算法分别得到令驱动系统效率最优的SEO(Sequential Elimination Optimization)算法、令双逆变器功率分配取得上下极限的P1MAX与P1MIN算法。在SEO、P1MAX与P1MIN算法之间进行实时斐波那契寻优,严格控制计算量,使得该策略可以在电机驱动系统控制器中在线实施。在当前电机工作点与功率分配指令的约束下,获得驱动系统效率的近似最优解,兼顾了功率分配范围与驱动系统效率方面的需求。
为了验证该控制策略的有效性,本文进行了电机驱动系统的动态过程仿真和台架试验。仿真结果显示,该控制策略能够在最大化电机有效工作范围的基础上,平衡效率与功率分配范围,提高驱动系统的整体性能。台架试验结果也表明,该控制策略能够显著降低电流与转矩纹波,提高系统的动态响应速度和稳定性。
(4) 双能量源的搭配方式与能量管理策略
在双能量源的搭配方式与能量管理策略方面,本文提出了基于通用架构的双能量源功率分配策略。该策略通过引入功率分配偏袒系数,可以定量调节功率分配对主副能量源理想输出功率的照顾程度。这样,可以在维护主能量源良好功率输出环境并提高其能量转化效率的同时,保持副能量源荷电状态的稳定,使电机驱动系统可以长时间稳定运行。
具体来说,本文详细分析了不同类型的双能量源组合,包括电池与超级电容、电池与燃料电池等。每种组合都有其特定的应用场景和优缺点。通过引入功率分配偏袒系数,可以根据实际需求灵活调整功率分配策略,以适应不同的工况。例如,在高速行驶时,可以优先使用电池提供动力,以提高系统的整体效率;在低速行驶或爬坡时,可以适当增加超级电容的功率输出,以提高系统的瞬时功率输出能力。
为了验证该能量管理策略的有效性,本文进行了整车能量管理仿真。仿真结果显示,该策略能够在协调主副能量源工作需求的同时,维持较高的能量转化效率,使车辆具备长距离稳定行驶能力。此外,通过优化能量管理策略,还可以显著降低系统的能耗,提高车辆的经济性。
# 示例代码 - 开绕组永磁同步电机驱动系统模型
import numpy as np
class OpenWindingPMSM:
def __init__(self, R, Ld, Lq, psi_f, J, B):
self.R = R # 定子电阻
self.Ld = Ld # d轴电感
self.Lq = Lq # q轴电感
self.psi_f = psi_f # 永磁体磁链
self.J = J # 转子转动惯量
self.B = B # 转子粘滞摩擦系数
self.id = 0.0 # d轴电流
self.iq = 0.0 # q轴电流
self.w = 0.0 # 电机角速度
self.theta = 0.0 # 电机转子角度
self.Tem = 0.0 # 电磁转矩
def update(self, ud, uq, dt):
# 计算d轴和q轴的电压方程
did_dt = (ud - self.R * self.id + self.w * self.Lq * self.iq) / self.Ld
diq_dt = (uq - self.R * self.iq - self.w * self.Ld * self.id - self.w * self.psi_f) / self.Lq
# 更新d轴和q轴电流
self.id += did_dt * dt
self.iq += diq_dt * dt
# 计算电磁转矩
self.Tem = 1.5 * (self.psi_f * self.iq + (self.Ld - self.Lq) * self.id * self.iq)
# 计算转子运动方程
dw_dt = (self.Tem - self.B * self.w) / self.J
self.w += dw_dt * dt
self.theta += self.w * dt
return self.id, self.iq, self.w, self.Tem
# 示例代码 - 双SVPWM调制与电压矢量分配
class DualSVPWM:
def __init__(self, Vdc, fsw):
self.Vdc = Vdc # 直流母线电压
self.fsw = fsw # 开关频率
self.vectors = self.generate_vectors()
def generate_vectors(self):
# 生成基本电压矢量
vectors = []
for i in range(8):
v = [0, 0, 0]
for j in range(3):
if (i >> j) & 1:
v[j] = self.Vdc / 2
else:
v[j] = -self.Vdc / 2
vectors.append(v)
return vectors
def modulate(self, ref_vector, dt):
# 计算调制系数
alpha = ref_vector[0] / (self.Vdc / 2)
beta = ref_vector[1] / (self.Vdc / 2)
# 选择合适的电压矢量组合
if alpha >= 0 and beta >= 0:
T1 = 2 / 3 * (alpha + beta)
T2 = 2 / 3 * (alpha - beta)
T3 = 1 - T1 - T2
T0 = 0
else:
T1 = 2 / 3 * (-alpha + beta)
T2 = 2 / 3 * (-alpha - beta)
T3 = 1 - T1 - T2
T0 = 0
# 生成调制信号
modulation_signals = []
for i in range(3):
if i == 0:
modulation_signals.append(T1 * self.vectors[1][i] + T2 * self.vectors[3][i] + T3 * self.vectors[7][i])
elif i == 1:
modulation_signals.append(T1 * self.vectors[3][i] + T2 * self.vectors[5][i] + T3 * self.vectors[7][i])
elif i == 2:
modulation_signals.append(T1 * self.vectors[5][i] + T2 * self.vectors[7][i] + T3 * self.vectors[1][i])
return modulation_signals
# 示例代码 - 电磁转矩与定子电流矢量控制
class TorqueControl:
def __init__(self, motor, kp, ki):
self.motor = motor
self.kp = kp # 比例增益
self.ki = ki # 积分增益
self.error_integral = 0.0
self.previous_error = 0.0
def calculate_control_signal(self, target_torque, current_torque, dt):
# 计算误差
error = target_torque - current_torque
# 计算积分项
self.error_integral += error * dt
# 计算微分项
derivative = (error - self.previous_error) / dt
# 计算控制信号
control_signal = self.kp * error + self.ki * self.error_integral + derivative
# 更新前一次误差
self.previous_error = error
return control_signal
# 示例代码 - 双能量源功率分配策略
class PowerManagement:
def __init__(self, main_source, secondary_source, bias_factor):
self.main_source = main_source
self.secondary_source = secondary_source
self.bias_factor = bias_factor # 功率分配偏袒系数
def allocate_power(self, total_power):
# 计算主副能量源的功率分配
main_power = self.bias_factor * total_power
secondary_power = (1 - self.bias_factor) * total_power
# 更新能量源状态
self.main_source.update(main_power)
self.secondary_source.update(secondary_power)
return main_power, secondary_power
# 示例代码 - 主程序
if __name__ == "__main__":
# 初始化电机模型
motor = OpenWindingPMSM(R=0.5, Ld=0.1, Lq=0.1, psi_f=0.5, J=0.1, B=0.01)
# 初始化双SVPWM调制器
svpwm = DualSVPWM(Vdc=400, fsw=10000)
# 初始化电磁转矩控制器
torque_controller = TorqueControl(motor, kp=1.0, ki=0.1)
# 初始化双能量源功率分配策略
main_source = Battery(capacity=50, voltage=400)
secondary_source = Supercapacitor(capacity=10, voltage=200)
power_management = PowerManagement(main_source, secondary_source, bias_factor=0.7)
# 模拟驾驶过程
for t in range(1000):
# 设置目标电磁转矩
target_torque = 10.0 # Nm
# 获取当前电磁转矩
current_torque = motor.Tem
# 计算控制信号
control_signal = torque_controller.calculate_control_signal(target_torque, current_torque, dt=0.01)
# 生成调制信号
modulation_signals = svpwm.modulate([control_signal, 0], dt=0.01)
# 更新电机状态
id, iq, w, Tem = motor.update(modulation_signals[0], modulation_signals[1], dt=0.01)
# 分配功率
total_power = 1000 # W
main_power, secondary_power = power_management.allocate_power(total_power)
# 打印当前状态
print(f"Time: {t}, Id: {id:.2f} A, Iq: {iq:.2f} A, w: {w:.2f} rad/s, Tem: {Tem:.2f} Nm, Main Power: {main_power:.2f} W, Secondary Power: {secondary_power:.2f} W")
# 示例代码 - 电池模型
class Battery:
def __init__(self, capacity, voltage):
self.capacity = capacity # 电池容量 (Ah)
self.voltage = voltage # 电池电压 (V)
self.soc = 1.0 # 电池荷电状态 (SOC)
def update(self, power, dt):
# 计算电池荷电状态变化
delta_soc = power * dt / (self.capacity * self.voltage)
self.soc -= delta_soc
# 限制SOC在0到1之间
self.soc = max(0.0, min(1.0, self.soc))
def get_soc(self):
return self.soc
# 示例代码 - 超级电容模型
class Supercapacitor:
def __init__(self, capacity, voltage):
self.capacity = capacity # 超级电容容量 (F)
self.voltage = voltage # 超级电容电压 (V)
self.charge = self.capacity * self.voltage # 初始电荷量 (C)
def update(self, power, dt):
# 计算电荷量变化
delta_charge = power * dt
self.charge -= delta_charge
# 计算超级电容电压
self.voltage = self.charge / self.capacity
def get_voltage(self):
return self.voltage