# Import necessary libraries
import simpy
import random
# Define the workstation class
class WorkStation:
def __init__(self, env, name, process_time):
self.env = env
self.name = name
self.process_time = process_time
self.resource = simpy.Resource(env, capacity=1)
def process(self, part):
yield self.env.timeout(self.process_time)
print(f"{part} processed at {self.name} at time {self.env.now}")
# Define logistics system
class Logistics:
def __init__(self, env, transport_time):
self.env = env
self.transport_time = transport_time
def transport(self, part):
yield self.env.timeout(self.transport_time)
print(f"{part} transported at time {self.env.now}")
# Simulation process
def production_process(env, workstations, logistics, parts):
for part in parts:
for station in workstations:
with station.resource.request() as req:
yield req
yield env.process(station.process(part))
yield env.process(logistics.transport(part))
print(f"{part} completed at time {env.now}")
# Initialize simulation environment
env = simpy.Environment()
# Define workstations and logistics system
workstations = [
WorkStation(env, "Machining", 5),
WorkStation(env, "Inspection", 3),
WorkStation(env, "Assembly", 4)
]
logistics = Logistics(env, transport_time=2)
# Define parts to process
parts = [f"Part{i}" for i in range(1, 11)]
# Run the simulation
env.process(production_process(env, workstations, logistics, parts))
env.run()
# Optimization logic: balance workload
def balance_workstations(workstations):
total_time = sum([ws.process_time for ws in workstations])
average_time = total_time / len(workstations)
for ws in workstations:
ws.process_time = average_time
print("Workload balanced across workstations.")
# Execute workload balance
balance_workstations(workstations)
✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅论文数据下载:工业工程毕业论文【数据集】
✅题目与创新点推荐:工业工业毕业论文【题目推荐】
(1) 汽车变速器涡轮轴生产车间布局优化
车间布局设计对生产效率和物流成本有直接影响。在对GF6涡轮轴生产车间进行分析后发现,现有车间布局存在以下主要问题:物流路径冗长、设备摆放不合理、作业单元间缺乏有效关联,导致车间内部管理混乱,物流成本增加,影响生产效率。
为了解决这些问题,本文运用经典的系统布置规划(SLP)方法,结合物流关系图和作业单元关系图对车间的布局问题进行系统分析。在物流关系图中,通过标注物流密集度、作业频率等关键指标,可以清晰地发现物流路径中的瓶颈问题,例如某些高频物流流向的路径冗长或受到其他设备占用干扰。在作业单元关系图中,则通过明确不同设备和工位之间的协作关系,发现布局中的不合理配置,例如相邻工序设备未实现紧邻布置,造成不必要的中间转运时间。
基于上述分析,提出了以下优化方案:
- 物流路径优化:重新设计车间的主物流通道,使物流动线更加直观、高效,避免设备和物料运输的交叉干扰。
- 设备重新布置:针对高频交互设备进行紧邻配置,降低转运时间;对空间利用率低的设备进行整合,腾出更多可用区域。
- 作业单元优化:按照工艺流程对作业单元进行分区布局,使每个区域的物流更加流畅,同时方便车间管理。
优化后,车间物流线路从原来的复杂网络优化为直线型或“U”型布局,大幅减少了物料的运输时间和距离,使得车间管理更为高效。
(2) 生产线平衡问题及改善措施
现有生产线在分析中发现,生产节拍波动较大,设备利用率不均衡,导致生产效率较低,具体表现为:部分工位过载成为生产瓶颈,而其他工位处于低负荷状态,生产线整体平衡率较低,无法满足客户需求的18秒节拍要求。
为了解决生产线平衡问题,本文从人、机、料、法、环五个方面进行系统分析:
- 设备过载问题:发现瓶颈工位的设备能力不足,例如某些关键加工设备的工艺时间过长。通过适当增加设备数量或采用高速设备,可以缓解瓶颈问题。
- 工位布置优化:部分工位布局不合理,导致物流在不同工位之间的传输时间过长。通过调整工位位置,缩短工位间的物流距离,降低了中间物流的时间损耗。
- 人员分配改进:部分工位需要人工操作,原有操作人员分配不均。通过重新分配人员和明确岗位职责,提高了作业效率。
- 工装夹具优化:现有的工装夹具存在装卸时间过长的问题,改进工装夹具设计,使得操作更加便捷,从而减少工时浪费。
- 环境改善:对工作环境中的噪音、灯光、空气流通等问题进行优化,为工人提供更舒适的工作条件,减少人为操作误差的发生。
通过以上改善措施,生产线平衡率从优化前的58.9%提高到94.5%,生产线节拍稳定在18秒,达到了客户的节拍需求。
(3) 优化成果与实施效果
经过优化后,车间的整体产能得到了显著提升,从原来的60万根/年提高到100万根/年,增长了67%,达到了规划产能。在具体实施中,以下优化成果尤为显著:
- 生产效率提高:通过物流路径优化和设备布置调整,物料从原材料到成品的流转效率大幅提升,加快了生产节奏。
- 设备利用率提升:瓶颈工位的设备利用率得到显著提高,同时通过负荷分配优化,减少了低负荷设备的闲置时间。
- 物流成本降低:物流路径的优化使物料运输距离缩短,运输时间减少,同时节约了物流设备的维护成本。
- 产品质量提升:由于优化了工装夹具设计和人员操作分配,产品在加工和装配过程中更加精准,从而减少了废品率。
在实施过程中,通过对优化方案的逐步试验和验证,发现物流路径直线化和设备紧邻布局对效率的提升贡献最大,尤其是在作业密集区,优化前后生产效率提升了约20%。这些改进不仅满足了当前的客户需求,也为车间未来的扩展和改进提供了空间。
# Import necessary libraries
import simpy
import random
# Define the workstation class
class WorkStation:
def __init__(self, env, name, process_time):
self.env = env
self.name = name
self.process_time = process_time
self.resource = simpy.Resource(env, capacity=1)
def process(self, part):
yield self.env.timeout(self.process_time)
print(f"{part} processed at {self.name} at time {self.env.now}")
# Define logistics system
class Logistics:
def __init__(self, env, transport_time):
self.env = env
self.transport_time = transport_time
def transport(self, part):
yield self.env.timeout(self.transport_time)
print(f"{part} transported at time {self.env.now}")
# Simulation process
def production_process(env, workstations, logistics, parts):
for part in parts:
for station in workstations:
with station.resource.request() as req:
yield req
yield env.process(station.process(part))
yield env.process(logistics.transport(part))
print(f"{part} completed at time {env.now}")
# Initialize simulation environment
env = simpy.Environment()
# Define workstations and logistics system
workstations = [
WorkStation(env, "Machining", 5),
WorkStation(env, "Inspection", 3),
WorkStation(env, "Assembly", 4)
]
logistics = Logistics(env, transport_time=2)
# Define parts to process
parts = [f"Part{i}" for i in range(1, 11)]
# Run the simulation
env.process(production_process(env, workstations, logistics, parts))
env.run()
# Optimization logic: balance workload
def balance_workstations(workstations):
total_time = sum([ws.process_time for ws in workstations])
average_time = total_time / len(workstations)
for ws in workstations:
ws.process_time = average_time
print("Workload balanced across workstations.")
# Execute workload balance
balance_workstations(workstations)