磁浮列车悬浮控制与磁轨关系耦合振动试验台设计及相似原理研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)单电磁铁悬浮系统研究

从原理上对最基本的单电磁铁悬浮单元展开研究,通过仿真深入分析间隙反馈系数、速度反馈系数、加速度反馈系数对单电磁铁悬浮系统的影响。间隙反馈系数影响着悬浮间隙的精准控制,当该系数取值不同时,电磁铁与轨道之间的悬浮间隙会发生变化,进而影响整个悬浮系统的稳定性。例如,较大的间隙反馈系数可能会使系统对间隙变化更为敏感,在一定程度上能快速调整悬浮状态,但也可能导致过度调整,使系统出现不稳定的波动。速度反馈系数与悬浮单元对速度变化的响应相关,合适的速度反馈系数能够使悬浮系统在车辆运行速度改变时,及时调整电磁铁的磁力,保证悬浮的平稳性。加速度反馈系数则对系统在加速或减速过程中的稳定性起着关键作用,其取值不当可能会引起悬浮单元的剧烈振动。同时,研究不同频率的外部激扰和弹性支承对单电磁铁悬浮系统稳定性的影响。低频激扰下,该悬浮系统展现出较好的跟随性,能够有效保证稳定的悬浮间隙,这使得车辆在受到低频干扰时,如桥梁的低频振动,仍能维持较为稳定的悬浮状态。而对于高频激扰,系统虽具有较强的自稳定能力,但会产生较大的振动加速度,这可能会对车辆的舒适性以及系统的零部件寿命产生一定影响。通过对这些因素的研究,为后续车轨耦合振动的分析奠定基础,也为确定合理的悬浮控制参数提供依据,从而确保磁浮列车在运行过程中的悬浮稳定性和可靠性。

(2)垂向磁轨关系及参数影响研究

以中低速磁浮列车所采用的一种悬浮控制策略为基础,深入探究在外界干扰下,考虑微小间隙波动的垂向磁轨关系。在实际运行环境中,车辆与轨道之间的垂向磁轨关系受到多种因素的影响。车体质量的变化会改变车辆对轨道的压力分布,进而影响电磁铁与轨道之间的磁力作用。较重的车体需要更大的磁力来维持悬浮,这就对悬浮控制系统提出了更高的要求。行车速度的提高,会使车辆受到的空气阻力、轨道不平顺激扰等因素的影响加剧,从而导致垂向磁轨关系更加复杂。例如,高速行驶时,车辆更容易受到轨道高频不平顺的影响,使得悬浮间隙的波动增大,进而影响磁浮列车的运行稳定性和舒适性。桥梁特性包括桥梁的刚度、阻尼等参数,对垂向磁轨关系也有着重要影响。刚度较大的桥梁能够为轨道提供更稳定的支撑,减少轨道的变形,有利于维持稳定的垂向磁轨关系;而阻尼的存在则可以吸收部分振动能量,降低车辆与轨道之间的振动传递。不平顺激扰是磁浮列车振动的重要来源之一,其频率和幅值的不同会对垂向磁轨关系产生不同程度的影响。通过对这些参数的综合研究,能够更全面地了解磁浮列车在运行过程中的垂向磁轨动态变化规律,为优化悬浮控制系统和轨道设计提供关键数据支持,以提高磁浮列车的运行品质和安全性。

(3)试验装置与实际轨道梁相似性研究及试验验证

针对试验装置的实际情况,基于相似理论,对 1:2 比例轨道梁与 1:1 实际轨道梁的特性相似性问题进行对比分析。在相似理论的指导下,从几何尺寸、材料特性、力学性能等多个方面对比例轨道梁和实际轨道梁进行研究。几何尺寸上的相似性保证了试验模型与实际结构在外形上的一致性,使得车辆在比例轨道梁上的运行姿态和与轨道的相互作用方式能够在一定程度上模拟实际情况。材料特性的相似性确保了轨道梁在受力和变形方面的行为与实际轨道梁相近,例如弹性模量、密度等参数的相似,使得比例轨道梁在承受车辆荷载时的变形规律和振动特性能够反映实际轨道梁的情况。通过车轨相互耦合作用仿真计算表明,试验台所模拟的比例轨道梁基本满足车轨耦合振动试验研究的需要,这为在实验室内进行车轨耦合振动研究提供了坚实的理论依据,也为预测新建或待建线路的车轨耦合振动问题创造了可靠的试验条件。利用专门研制的车轨耦合振动试验台,以新研制的时速 140km/h 中低速磁浮列车单个悬浮架实物进行车轨耦合振动试验,对不同轨道梁质量、轨道梁弹性、车体质量等条件下,单悬浮架的车轨耦合振动稳定性进行了深入研究。试验结果表明,磁浮列车稳定悬浮能力对轨道梁的质量较为敏感,过轻的轨道梁质量不利于列车的稳定悬浮。当轨道梁质量满足一定要求后,过小的轨道梁等效刚度也会对磁浮列车稳定悬浮产生不利影响。而且,车体载重越大,越不利于列车的稳定悬浮。因此,基于列车最大载重,合理确定轨道梁的质量和等效刚度至关重要。通过试验研究,进一步验证了理论分析和仿真结果的正确性,同时也为磁浮列车的工程应用提供了直接的实践指导,有助于优化磁浮交通系统的设计和建设,提高其运行稳定性和安全性,推动磁浮交通技术的发展和应用。

 

import numpy as np
import matplotlib.pyplot as plt

# 定义系统参数
m = 1.0  # 电磁铁质量(kg)
k = 100.0  # 弹性系数(N/m)
c = 10.0  # 阻尼系数(N·s/m)

# 定义时间步长和仿真时间
dt = 0.01
t_end = 10
t = np.arange(0, t_end, dt)

# 初始化位移、速度和加速度数组
x = np.zeros(len(t))
v = np.zeros(len(t))
a = np.zeros(len(t))

# 初始位移和速度
x[0] = 0.1
v[0] = 0

# 定义外部激扰(这里假设为正弦波形式的高频激扰)
f_ext = 5 * np.sin(50 * t)

# 仿真单电磁铁悬浮系统的运动
for i in range(1, len(t)):
    # 计算合力
    f_mag = k * x[i - 1] + c * v[i - 1]  # 磁力(简化模型)
    f_total = f_mag - f_ext[i]

    # 根据牛顿第二定律计算加速度
    a[i] = f_total / m

    # 更新速度和位移
    v[i] = v[i - 1] + a[i] * dt
    x[i] = x[i - 1] + v[i] * dt

# 绘制位移、速度和加速度随时间的变化曲线
plt.figure(figsize=(12, 8))
plt.subplot(3, 1, 1)
plt.plot(t, x)
plt.xlabel('Time (s)')
plt.ylabel('Displacement (m)')
plt.title('Displacement of Single Electromagnet Suspension System')

plt.subplot(3, 1, 2)
plt.plot(t, v)
plt.xlabel('Time (s)')
plt.ylabel('Velocity (m/s)')
plt.title('Velocity of Single Electromagnet Suspension System')

plt.subplot(3, 1, 3)
plt.plot(t, a)
plt.xlabel('Time (s)')
plt.ylabel('Acceleration (m/s²)')
plt.title('Acceleration of Single Electromagnet Suspension System')

plt.tight_layout()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值