高维全局优化问题生物地理学优化算法毕业论文【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


1) 针对高维全局优化问题中生物地理学优化算法易陷入局部最优、收敛速度慢的不足,提出一种融合正弦余弦算法和动态混合变异的对偶BBO变体(SCBBO)。该算法首先采用拉丁超立方抽样初始化种群,确保解空间均匀覆盖;其次,在迁移算子中嵌入改进的正弦余弦更新公式,引入非线性递减参数和惯性权重,增强高维环境下的勘探能力;然后,设计动态混合变异算子,结合拉普拉斯变异的大步长探索和高斯变异的精细开发,根据迭代进度自适应调整变异概率,平衡全局与局部搜索;最后,集成对偶学习策略,为每个个体生成对称解,通过比较选择更优者,提升收敛精度。理论分析通过构造数列收敛模型证明算法以概率1全局收敛。在CEC2013高维测试集上的实验表明,SCBBO在1000维至10000维问题上均保持稳定性能,显著优于对比算法。

(2) 为解决复杂多峰优化问题中BBO算法开发能力弱、参数敏感的问题,提出一种基于混合迁移算子和反馈差分进化机制的BBO变体(HFBBO)。该算法引入榜样学习法,在迁移过程中禁止劣解覆盖优解,保留精英信息;混合迁移算子通过随机切换全局迁移(向最优个体学习)和局部迁移(向邻域个体学习),实现搜索模式动态调整;反馈差分进化机制替代传统变异,根据种群多样性指标自动选择差分变异策略(如DE/rand/1或DE/best/2),避免早熟收敛。算法收敛性通过Markov链模型证明,复杂度分析显示其与标准BBO相当。在CEC2014和CEC2017测试集的广泛实验中,HFBBO在多数函数上获得最优结果,Friedman检验排名第一,显示出强大鲁棒性。

(3) 面向现实工程中的约束优化问题,将改进的Oracle惩罚函数法与BBO算法结合,处理等式和不等式约束。该方法将约束违反度转化为自适应惩罚项,动态调整惩罚系数,确保搜索朝向可行域;同时,针对混合变量问题,设计通用离散化处理模块,将离散变量映射为连续编码,优化后再逆映射回原始空间。基于此,开发SCBBO-CH和HFBBO-CH两种算法,应用于CEC2020现实约束优化测试集的57个问题,涵盖机械设计、资源分配等领域。实验结果表明,所提算法在近半数问题上达到理论最优解,且求解效率高于传统罚函数法,验证了其在复杂约束处理中的有效性。

import numpy as np
import math
def latin_hypercube_sampling(num, dim, bounds):
    samples = np.zeros((num, dim))
    for i in range(dim):
        segment = (bounds[1] - bounds[0]) / num
        samples[:, i] = np.array([bounds[0] + (j + np.random.rand()) * segment for j in range(num)])
        np.random.shuffle(samples[:, i])
    return samples
class SCBBO:
    def __init__(self, num_species, dim, bounds, objective):
        self.population = latin_hypercube_sampling(num_species, dim, bounds)
        self.fitness = np.array([objective(ind) for ind in self.population])
        self.bounds = bounds
        self.dim = dim
        self.best_idx = np.argmin(self.fitness)
        self.best_solution = self.population[self.best_idx].copy()
        self.best_fitness = self.fitness[self.best_idx]
    def migration(self, migration_rates):
        new_pop = self.population.copy()
        for i in range(len(self.population)):
            if np.random.rand() < migration_rates[i]:
                j = np.random.randint(len(self.population))
                for k in range(self.dim):
                    if np.random.rand() < 0.5:
                        new_pop[i][k] = self.population[j][k]
        return new_pop
    def sca_update(self, iteration, max_iter):
        a = 2 - iteration * (2 / max_iter)
        new_pop = self.population.copy()
        for i in range(len(self.population)):
            r1 = a * (1 - iteration / max_iter)
            r2 = 2 * math.pi * np.random.rand()
            r3 = 2 * np.random.rand()
            r4 = np.random.rand()
            if r4 < 0.5:
                new_pop[i] += r1 * math.sin(r2) * abs(r3 * self.best_solution - self.population[i])
            else:
                new_pop[i] += r1 * math.cos(r2) * abs(r3 * self.best_solution - self.population[i])
        return new_pop
    def dynamic_mutation(self, iteration, max_iter):
        mutated = self.population.copy()
        mutation_prob = 0.1 * (1 - iteration / max_iter)
        for i in range(len(self.population)):
            if np.random.rand() < mutation_prob:
                if np.random.rand() < 0.5:
                    mutated[i] += np.random.laplace(0, 1, self.dim) * 0.5
                else:
                    mutated[i] += np.random.normal(0, 1, self.dim) * 0.2
        return mutated
    def dual_learning(self):
        dual_pop = -self.population.copy()
        return np.clip(dual_pop, self.bounds[0], self.bounds[1])
    def optimize(self, max_iter, objective):
        for iter in range(max_iter):
            migration_rates = 1 - (self.fitness - np.min(self.fitness)) / (np.max(self.fitness) - np.min(self.fitness) + 1e-8)
            self.population = self.migration(migration_rates)
            self.population = self.sca_update(iter, max_iter)
            self.population = self.dynamic_mutation(iter, max_iter)
            dual_pop = self.dual_learning()
            combined_pop = np.vstack([self.population, dual_pop])
            combined_fitness = np.array([objective(ind) for ind in combined_pop])
            best_combined_idx = np.argsort(combined_fitness)[:len(self.population)]
            self.population = combined_pop[best_combined_idx]
            self.fitness = combined_fitness[best_combined_idx]
            self.best_idx = np.argmin(self.fitness)
            if self.fitness[self.best_idx] < self.best_fitness:
                self.best_fitness = self.fitness[self.best_idx]
                self.best_solution = self.population[self.best_idx].copy()
        return self.best_solution, self.best_fitness
def ackley_function(x):
    return -20 * np.exp(-0.2 * np.sqrt(np.mean(x ** 2))) - np.exp(np.mean(np.cos(2 * math.pi * x))) + 20 + math.e
scbbo = SCBBO(50, 10, [-32, 32], ackley_function)
best_sol, best_fit = scbbo.optimize(100, ackley_function)
print(f"Best Solution: {best_sol}, Best Fitness: {best_fit}")


如有问题,可以直接沟通

👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值