群智能算法热连轧负荷分配优化毕业论文【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 为提高热连轧轧制力预测精度,提出三种改进粒子群算法优化最小二乘支持向量机参数。第一种为自适应加速度粒子群算法(TACPSO),其认知和社会因子随粒子适应值动态调整,适应值差的粒子增大探索步长,适应值优的粒子细化开发;第二种为指数时变加速度粒子群算法(IPSO),加速度系数按指数曲线衰减,早期强调全局搜索,后期侧重局部调优;第三种融合莱维飞行扰动,避免早熟。在基准测试中,TACPSO和IPSO收敛速度比标准PSO提升30%以上。基于现场数据预处理后,建立TACPSO-LSSVM和IPSO-LSSVM预测模型,优化LSSVM的惩罚参数和核宽,实验显示预测均方根误差降低至5%以内,满足工程要求。

(2) 针对热连轧负荷分配多目标优化问题,设计一种多策略融合麻雀搜索算法(CSFSSA)。该算法首先采用改进Circle混沌映射初始化种群,增强遍历性;其次,在麻雀加入者位置更新中引入正余弦算法,利用周期性函数平衡探索与开发;然后,借鉴萤火虫扰动策略,对麻雀种群进行局部随机扰动,避免陷入局部最优;最后,设计自适应权重调整机制,根据迭代进度调整各策略贡献度。在单峰、多峰测试函数上验证,CSFSSA寻优精度比标准麻雀算法提高25%以上。将其应用于热连轧负荷分配,建立以负荷平衡、板形良好和能耗最低为目标的多目标模型,优化各机架压下率和速度分配,生成Pareto前沿,为操作人员提供多种优质方案。

(3) 集成预测与优化模块,构建热连轧过程智能决策系统。该系统以轧制力预测模型输出作为负荷分配优化的输入约束,确保预测精度与分配合理性协同。采用CSFSSA求解多目标优化问题,并结合模糊决策从Pareto解集中选取最适用方案。在某钢厂实际数据仿真中,优化后负荷分配方案使轧制力波动减少15%,能耗降低8%,板形质量提高12%,验证了所提算法的工程实用性。

import numpy as np
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
class TACPSO:
    def __init__(self, num_particles, dim, bounds, objective):
        self.particles = np.random.rand(num_particles, dim) * (bounds[1] - bounds[0]) + bounds[0]
        self.velocities = np.random.rand(num_particles, dim) * 0.1
        self.pbest_positions = self.particles.copy()
        self.pbest_values = np.array([objective(p) for p in self.particles])
        self.gbest_position = self.particles[np.argmin(self.pbest_values)]
        self.gbest_value = np.min(self.pbest_values)
        self.objective = objective
        self.w = 0.9
    def update(self, iter, max_iter):
        for i in range(len(self.particles)):
            c1 = 2.5 - 2 * (self.pbest_values[i] - self.gbest_value) / (self.pbest_values[i] + 1e-8)
            c2 = 2.5 + 2 * (self.pbest_values[i] - self.gbest_value) / (self.pbest_values[i] + 1e-8)
            r1, r2 = np.random.rand(2)
            self.velocities[i] = self.w * self.velocities[i] + c1 * r1 * (self.pbest_positions[i] - self.particles[i]) + c2 * r2 * (self.gbest_position - self.particles[i])
            self.particles[i] += self.velocities[i]
            current_value = self.objective(self.particles[i])
            if current_value < self.pbest_values[i]:
                self.pbest_values[i] = current_value
                self.pbest_positions[i] = self.particles[i].copy()
                if current_value < self.gbest_value:
                    self.gbest_value = current_value
                    self.gbest_position = self.particles[i].copy()
        self.w *= 0.995
        return self.gbest_value
def rolling_force_prediction_model(X_train, y_train, X_test):
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    def objective(params):
        C, gamma = params
        model = SVR(C=C, gamma=gamma, kernel='rbf')
        model.fit(X_train_scaled, y_train)
        y_pred = model.predict(X_train_scaled)
        return np.mean((y_pred - y_train) ** 2)
    bounds = [[0.1, 100], [0.001, 1]]
    pso = TACPSO(20, 2, bounds, objective)
    for iter in range(50):
        pso.update(iter, 50)
    best_C, best_gamma = pso.gbest_position
    final_model = SVR(C=best_C, gamma=best_gamma, kernel='rbf')
    final_model.fit(X_train_scaled, y_train)
    y_pred_test = final_model.predict(X_test_scaled)
    return y_pred_test
class CSFSSA:
    def __init__(self, num_sparrows, dim, bounds, objective):
        self.population = np.random.rand(num_sparrows, dim) * (bounds[1] - bounds[0]) + bounds[0]
        self.fitness = np.array([objective(ind) for ind in self.population])
        self.bounds = bounds
        self.objective = objective
        self.best_idx = np.argmin(self.fitness)
        self.best_solution = self.population[self.best_idx].copy()
        self.best_fitness = self.fitness[self.best_idx]
    def circle_chaos(self, size):
        sequence = np.zeros(size)
        x = 0.2
        for i in range(size):
            x = (x + 0.2 - (0.5 / (2 * np.pi)) * np.sin(2 * np.pi * x)) % 1
            sequence[i] = x
        return sequence
    def update(self, iter, max_iter):
        num_producers = int(0.2 * len(self.population))
        for i in range(len(self.population)):
            if i < num_producers:
                if np.random.rand() < 0.8:
                    for j in range(self.population.shape[1]):
                        self.population[i][j] *= np.exp(-i / (0.1 * max_iter))
                else:
                    self.population[i] += np.random.randn(self.population.shape[1]) * 0.1
            else:
                if i > len(self.population) / 2:
                    for j in range(self.population.shape[1]):
                        self.population[i][j] = self.circle_chaos(1)[0] * (self.best_solution[j] - self.population[i][j]) * np.exp(-i ** 2)
                else:
                    a = 2 * np.cos(iter * np.pi / max_iter)
                    r3 = np.random.rand()
                    for j in range(self.population.shape[1]):
                        if r3 < 0.5:
                            self.population[i][j] = self.best_solution[j] + a * np.sin(np.random.rand() * 2 * np.pi) * abs(self.best_solution[j] - self.population[i][j])
                        else:
                            self.population[i][j] = self.best_solution[j] + a * np.cos(np.random.rand() * 2 * np.pi) * abs(self.best_solution[j] - self.population[i][j])
            self.population[i] = np.clip(self.population[i], self.bounds[0], self.bounds[1])
            self.fitness[i] = self.objective(self.population[i])
            if self.fitness[i] < self.best_fitness:
                self.best_fitness = self.fitness[i]
                self.best_solution = self.population[i].copy()
        return self.best_solution, self.best_fitness
def load_allocation_objective(x):
    balance = np.sum((x - np.mean(x)) ** 2)
    energy = np.sum(x ** 2)
    shape = np.sum(np.abs(np.diff(x)))
    return 0.5 * balance + 0.3 * energy + 0.2 * shape
cssa = CSFSSA(30, 5, [0, 1], load_allocation_objective)
best_sol, best_fit = cssa.update(0, 100)
print(f"Optimal Load Allocation: {best_sol}, Objective Value: {best_fit}")


如有问题,可以直接沟通

👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值