向量总结

既有大小又有方向的量叫做向量。

1、向量积可以被定义为:

模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。)

 

\left | \vec{a}*\vec{b} \right |=\left | \vec{a} \right |*\left | \vec{b} \right |*sin\theta

 

2、向量的大小,也就是向量的长度(或称模)。

空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是

\sqrt[2]{x^{2}+y^{2}+z^{2}}

平面向量(x,y),模长是:

\sqrt[2]{x^{2}+y^{2}}

 

3、向量的和的模

\left | a+b \right |=\sqrt{\left |a ^{2} \right |}+b^{2}+2*\left | a \right |*\left | b \right |*cos\theta

4、数量积

数量积(又叫内积、点积)

向量的内积(点乘)

俩个向量ab的内积为a*b=\left | a \right |*\left | b \right |*cos\theta,特别地,0·a =a·0 = 0;若ab是非零向量,则ab****正交的充要条件是a·b = 0。

向量内积的几何意义

内积(点乘)的几何意义包括:

  1. 表征或计算两个向量之间的夹角
  2. b向量在a向量方向上的投影

向量的外积(叉乘)

 

a=(x1,y1,z1)

b=(x2,y2,z2)

a*b=\begin{pmatrix} i & j& k& \\ x1& y1& z1&\\ x2 & y2 & z2&\\ \end{pmatrix}=(y1z2-y2z1)i-(x1z2-x2z1)j-(x1y2-x2y1)k

其中,i=(1,0,0);j=(0,1,0);z=(0,0,1)

关系:

a*b=(y1z2-y2z1,-(x1z2-x2z1),x1y2-x2y1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值