通俗来讲:
一阶求导是求函数各点的斜率 整体就是函数的单调性,而二阶是求函数整体的凹凸性,
也就相当于求各点斜率的增减规律,
也就是凹凸性
拐点不一定是极值点 但极值点一定是拐点
凹凸性可以纵观函数走势凹凸性的作用就在于区分极点和拐点……
概念:
一阶导数的物理意义:切线斜率变化的速度,表示的是一阶导数的变化率。
二阶导数的物理意义:函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。
f'(x)=dy/dx (f(x)的一阶导数)
f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)
代数标记为:
二阶导数记作
即y''=(y')'。
[1]
列如:y=x²的 导数为y'=2x,二阶导数即y'=2x的导数为y''=2。
二级导数在应用领域主要可以做什么?
1、二阶导数大于0,区间线段在在连接任意点的上面,否则在下方
注意:以上用途对理工科的人来讲很有用处

列如:y=x²的 导数为y'=2x,二阶导数即y'=2x的导数为y''=2。
二级导数在应用领域主要可以做什么?
1、二阶导数大于0,区间线段在在连接任意点的上面,否则在下方
几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
2、求取极大值和极小值
(2)判断函数
极大值以及极小值。
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数 小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
3、判断曲线函数的凹凸性
(3)函数凹凸性。
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是
凹的;
(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是
凸的。
注意:以上用途对理工科的人来讲很有用处