考研高数(一阶导与二阶导)

本文介绍了如何利用一阶导数判断函数的单调性,包括递增、递减和常函数,以及通过一阶导数等于0的根确定单调区间。同时,详细解释了二阶导数的作用,即判断函数的凹凸性。提及考研大纲对这些内容的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一阶导数

导数最大的作用是判断复杂函数的单调性,则可用一阶导判断原函数的单调性。

一阶导数>0:函数单调递增;

一阶导数<0:函数单调递减;

一阶导数=0:函数是常函数。

也可以通过一阶导数=0的根来判断出函数的单调区间,进而知道函数的趋势图像。而当一阶导数

无法判断函数的单调性时,需要二阶求导。

二阶导数

二阶导数可判断原函数的凹凸性。

二阶导数>0:一阶导数是单调增函数,即原函数在各店的切线斜率随x的增大而增大的,原函数是凹图像。

二阶导数<0:一阶导数是单调减函数,即原函数在各店的切线斜率随x的增大而减小的,原函数是凸图像。

考研大纲规定:

6d7e6ee5dbdd47668bb2cd85d63ad8aa.jpg

f651946607ca47bcb26b52adde363f75.png

8fedd49302744eb2928fd203dc858148.png

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值