题目分析
表示自己这个弱菜写这种dp然后并不会,具体过程看注释吧。
/*
很巧妙的一道题,是别人写的dp总结给出的一道题,这道题消除后效性
非常巧妙,dp[i][j]表示长度为i最后一个数字为j的方法数(请注意长度为i的i个数的大小不超过i)
这样我们就可以得出状态转移方程了,但是如果对于前一个状态大于等于当前状态最后一个数字的
情况是,这个时候我们将这些数字加1,这样消除后效性。
我们用sum[i][j] 表示 dp[i][1] + ... + dp[i][j];这样就给dp降维了。。表示这道题真的好巧妙呀!!
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e3+100;
const int mod = 1e9+7;
#define LL long long
char s[maxn];
LL dp[maxn][maxn], sum[maxn][maxn];
int main(){
while(scanf("%s", s+1) != EOF){
memset(dp, 0, sizeof(dp));
memset(sum, 0, sizeof(sum));
int n = strlen(s+1);
dp[1][1] = sum[1][1] = 1LL;
for(int i = 2; i <= n+1; i++){
for(int j = 1; j <= i; j++){
if(s[i-1] == 'I') dp[i][j] = sum[i-1][j-1];
else if(s[i-1] == 'D') dp[i][j] = (sum[i-1][i-1] - sum[i-1][j-1] + mod)%mod;
else dp[i][j] = sum[i-1][i-1];
sum[i][j] = (sum[i][j-1] + dp[i][j])%mod;
}
}
printf("%I64d\n", sum[n+1][n+1]);
}
return 0;
}