题目分析
这道题我表示可以写的方法真的很多,比如线段树,我以前已经写过了,但是树状数组自己第一次写,树状数组反着推表示自己真的看了好久。
前缀和思想
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+100;
int a[maxn];
int main(){
int n;
while(scanf("%d", &n) != EOF && n){
int l, r;
memset(a, 0, sizeof(a));
for(int i = 0; i < n; i++){
scanf("%d%d", &l, &r);
a[l]++, a[r+1]--;
}
for(int i = 1; i < n; i++){
a[i] += a[i-1];
printf("%d ", a[i]);
}
printf("%d\n", a[n] + a[n-1]);
}
return 0;
}
树状数组写法1
因为树状数组维护的是前缀和,那么我们很明显就可以在l位置上加1,r+1位置上减一,这样每一个前缀和sum[1..i]表示的就是i位置染色的次数,跟上一个解法的思想一模一样。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+100;
int n;
int C[maxn];
inline lowbit(int x){
return x&-x;
}
void add(int x, int y){
while(x <= n){
C[x] += y;
x += lowbit(x);
}
}
int sum(int x){
int ret = 0;
while(x > 0){
ret += C[x];
x -= lowbit(x);
}
return ret;
}
int main(){
while(scanf("%d", &n) != EOF && n){
memset(C, 0, sizeof(C));
int l, r;
for(int i = 0; i < n; i++){
scanf("%d%d", &l, &r);
add(l, 1);
add(r+1, -1);
}
for(int i = 1; i < n; i++)
printf("%d ", sum(i));
printf("%d\n", sum(n));
}
return 0;
}
树状数组写法2
树状数组中的每个节点都代表了一段线段区间,每次更新的时候,根据树状数组的特性可以把b以前包含的所有区间都找出来,然后把b之前的区间全部加一次染色次数。然后,再把a之前的区间全部减一次染色次数,这样就修改了树状数组中的[a,b]的区间染色次数,查询每一个点总的染色次数的时候,就可以直接向上统计每个父节点的值,就是包含这个点的所有区间被染色次数,这就是树状数组中向下查询,向上统计的典型应用。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+100;
int n, C[maxn];
inline int lowbit(int x){
return x&(-x);
}
void add(int x, int y){
while(x > 0){
C[x] += y;
x -= lowbit(x);
}
}
int sum(int x){
int ret = 0;
while(x <= n){
ret += C[x];
x += lowbit(x);
}
return ret;
}
int main(){
while(scanf("%d", &n) != EOF && n){
memset(C, 0, sizeof(C));
int l, r;
for(int i = 0; i < n; i++){
scanf("%d%d", &l, &r);
add(l-1, -1);
add(r, 1);
}
for(int i = 1; i < n; i++)
printf("%d ", sum(i));
printf("%d\n", sum(n));
}
return 0;
}