[模板]三维几何模板

转自:http://bbs.byr.cn/#!article/ACM_ICPC/63440

/* 
    Project: AkemiHomura's Standard Code Library [AHSCL] 
    Author: [BUPT]AkemiHomura@UESTC_Kyouko 
    Category: Geometry 
    Title: Geometry Base 3d ver Header 
    Version: 0.314 
    Date: 2012-08-26 
    Remark: Structure definations and base functions 
    Tested Problems: N/A 
    Tag: Geometry 
    Special Thanks: Amber, eucho@PuellaMagi, mabodx@PuellaMagi, lxyxynt@UESTC_Kyouko, thomas0726@UESTC_Kyouko 
 */
   
 #ifndef GEOMETRY_BASE_3D_H 
 #define GEOMETRY_BASE_3D_H 
   
 #include <cstdio> 
 #include <cmath> 
 #include <algorithm> 
 using namespace std; 
   
 /***<常量表****/
 const int MAXN = 1000; 
 const double INF = 1e10; 
 const double EPS = 1e-8; 
 const double PI = acos(-1.0); 
 /****常量表>***/
   
 /***<浮点函数****/
 inline int sgn(double d) { 
    if (fabs(d) < EPS) return 0; 
    return d>0 ? 1: -1; 
 } 
   
 inline double min(double a, double b) 
 {return a<b ? a : b;} 
   
 inline double max(double a, double b) 
 {return a>b ? a : b;} 
   
 inline double sqr(double x) { 
    return x*x; 
 } 
 /****浮点函数>***/
   
 /***<点/向量定义与运算****/
 struct sp { 
    double x, y, z; 
    sp() {} 
    sp(double a, double b, double c): x(a), y(b), z(c) {} 
    bool read() {return scanf("%lf%lf%lf", &x, &y, &z)==3;} 
    void write() {printf("%f %f %f\n", x, y, z);} 
 }; 
   
 sp operator-(const sp &u, const sp &v) { 
    return sp(u.x-v.x, u.y-v.y, u.z-v.z); 
 } 
   
 sp operator+(const sp &u, const sp &v) { 
    return sp(u.x+v.x, u.y+v.y, u.z+v.z); 
 } 
   
 //数乘 
 sp operator*(double d, const sp &v) { 
    return sp(d*v.x, d*v.y, d*v.z); 
 } 
   
 //范数 
 double nrm(const sp &v) { 
    return sqrt(v.x*v.x+v.y*v.y+v.z*v.z); 
 } 
   
 //范数平方 
 double nrmsqr(const sp &v) { 
    return v.x*v.x+v.y*v.y+v.z*v.z; 
 } 
   
 //内积(点积) 
 double dot(const sp &u, const sp &v) { 
    return u.x*v.x+u.y*v.y+u.z*v.z; 
 } 
   
 //外积(叉积) 
 sp det(const sp &u, const sp &v) { 
    return sp(u.y*v.z-v.y*u.z, 
            u.z*v.x-u.x*v.z, 
            u.x*v.y-u.y*v.x); 
 } 
   
 //三角形有向面积*2 
 //(p, u, v)确定的右手系 
 sp dir(const sp &p, const sp &u, const sp &v) { 
    return det(u-p, v-p); 
 } 
   
 //三角形面积*2 
 double area(const sp &a, const sp &b, const sp &c) { 
    return nrm(dir(a, b, c)); 
 } 
   
 //四面体有向体积*6 
 //正负代表p在(v-u, w-u)所确定右手系平面的方向 
 double volume(const sp &u, const sp &v, const sp &w, const sp &p) { 
    return dot(dir(u, v, w), p-u); 
 } 
   
 const sp ORIGIN = sp(0, 0, 0); 
 /****点/向量定义与运算>***/
   
 /***<线段/直线定义****/
 struct ss 
 { 
    sp a, b; 
    ss() {} 
    ss(sp u, sp v): a(u), b(v) {} 
 }; 
 /****线段/直线定义>***/
   
 /***<平面定义****/
 struct splane 
 { 
    sp a, b, c; 
    splane() {} 
    splane(sp u, sp v, sp w): a(u), b(v), c(w) {} 
 }; 
   
 //法向量 
 sp nv(const splane &s) { 
    return det(s.a-s.b, s.b-s.c); 
 } 
   
 //ax+by+cz+d=0 
 struct splanef { 
    double a, b, c, d; 
    splanef() {} 
    splanef(double p, double q, double r, double s): a(p), b(q), c(r), d(s) {} 
    splanef(const splane &p) { 
        sp m = det(p.b-p.a, p.c-p.a); 
        a = m.x, b = m.y, c = m.z; 
        d = -m.x*p.a.x-m.y*p.a.y-m.z*p.a.z; 
    } 
 }; 
 /****平面定义>***/
   
 /***<点与线基本函数****/
 //两点距离 
 double dis(const sp &u, const sp &v) { 
    return sqrt(sqr(u.x-v.x)+sqr(u.y-v.y)+sqr(u.z-v.z)); 
 } 
   
 //三点共线 
 bool coline(const sp &p1, const sp &p2, const sp &p3) { 
    return nrmsqr(det(p1-p2,p2-p3))<EPS; 
 } 
   
 //四点共面 
 bool coplane(const sp &a, const sp &b, const sp &c, const sp &d) { 
    return sgn(dot(det(c-a, b-a), d-a))==0; 
 } 
   
 //点在直线上 
 bool online(const sp &p, const ss &l) { 
    return coline(p, l.a, l.b); 
 } 
   
 //点在线段上,包括端点 
 bool onseg(const sp &p, const ss &l) { 
    return sgn(nrmsqr(det(p-l.a, p-l.b)))==0 && 
        (l.a.x-p.x)*(l.b.x-p.x)<EPS && 
        (l.a.y-p.y)*(l.b.y-p.y)<EPS && 
        (l.a.z-p.z)*(l.b.z-p.z)<EPS; 
 } 
   
 //点在线段上,不包括端点 
 bool onsegex(const sp &p, const ss &l) { 
    return onseg(p, l) && 
        (sgn(p.x-l.a.x)||sgn(p.y-l.a.y)||sgn(p.z-l.a.z)) && 
        (sgn(p.x-l.b.x)||sgn(p.y-l.b.y)||sgn(p.z-l.b.z)); 
 } 
   
 //点在空间三角形上,包括边界,三点共线无意义 
 bool onplane(const sp &p, const splane &s) { 
    return sgn(nrm(det(s.a-s.b, s.a-s.c))- 
            nrm(det(p-s.a, p-s.b))- 
            nrm(det(p-s.b, p-s.c))- 
            nrm(det(p-s.c, p-s.a)))==0; 
 } 
   
 //点在空间三角形上,不包括边界,三点共线无意义 
 bool onplaneex(const sp &p, const splane &s) { 
    return onplane(p, s) && 
        nrmsqr(det(p-s.a, p-s.b))>EPS && 
        nrmsqr(det(p-s.b, p-s.c))>EPS && 
        nrmsqr(det(p-s.c, p-s.a))>EPS; 
 } 
   
 //两点在直线同侧,点在线段上返回0,不共面无意义 
 bool sameside(const sp &u, const sp &v, const ss &l) { 
    return dot(det(l.a-l.b, p-l.b),det(l.a-l.b, q-l.b))>EPS; 
 } 
   
 //两点在直线异侧,点在线段上返回0,不共面无意义 
 bool oppositeside(const sp &u, const sp &v, const ss &l) { 
    return dot(det(l.a-l.b, p-l.b),det(l.a-l.b, q-l.b))<-EPS; 
 } 
   
 //两点在平面同侧,点在平面上返回0 
 bool sameside(const sp &u, const sp &v, const splane &s) { 
    return dot(nv(s), det(p-s.a))*dot(nv(s),det(q-s.a))>EPS; 
 } 
   
 //两点在平面同侧,点在平面上返回0 
 bool sameside(const sp &u, const sp &v, const splanef &s) { 
    return (s.a*u.x+s.b*u.y+s.c*u.z+s.d)*(s.a*v.x+s.b*v.y+s.c*v.z+s.d)>EPS; 
 } 
   
 //判两点在平面异侧,点在平面上返回0 
 bool oppositeside(const sp &u, const sp &v, const splane &s) { 
    return dot(nv(s), det(p-s.a))*dot(nv(s),det(q-s.a))<-EPS; 
 } 
   
 //判两点在平面异侧,点在平面上返回0 
 bool oppositeside(const sp &u, const sp &v, const splanef &s) { 
    return (s.a*u.x+s.b*u.y+s.c*u.z+s.d)*(s.a*v.x+s.b*v.y+s.c*v.z+s.d)<-EPS; 
 } 
   
 //判两直线平行 
 bool parallel(const ss &u, const ss &v) { 
    return nrmsqr(det(u.a-u.b, v.a-v.b))<EPS; 
 } 
   
 //判两平面平行 
 bool parallel(const splane &u, const splane &v) { 
    return nrmsqr(det(nv(u), nv(v)))<EPS; 
 } 
   
 //点到直线距离(直线不可以退化) 
 double disptoline(const sp &p, const ss &l) { 
    return nrm(det(p-l.a, l.b-l.a))/dis(l.a, l.b); 
 } 
   
 //点到直线最近点 
 sp ptoline(const sp &p, const ss &l) { 
    sp ab = l.b-l.a; 
    double t = -dot(p-l.a, ab)/nrmsqr(ab); 
    ab = t*ab; 
    return l.a-ab; 
 } 
   
 //点到线段距离 
 double disptoseg(const sp &p, const ss &l) { 
    sp q = ptoline(p, l); 
    if (onseg(q, l)) return dis(p, q); 
    return min(dis(p, l.a), dis(p, l.b)); 
 } 
   
 //点到线段最近点 
 sp ptoseg(const sp &p, const ss &l) { 
    sp q = ptoline(p, l); 
    if (onseg(q, l)) return q; 
    return dis(p, l.a)<dis(p, l.b)?l.a:l.b; 
 } 
   
 //直线到直线最短距离 
 double dislinetoline(const ss &u, const ss &v) { 
    sp n = det(u.a-u.b, v.a-v.b); 
    if (nrmsqr(n)<EPS) //两直线平行 
        return disptoline(u.a, v); 
    else
        return fabs(dot(u.a-v.a, n))/nrm(n); 
 } 
   
 //直线到直线最近点对(需要保证直线不平行) 
 //返回p在u上,q在v上 
 void linetoline(const ss &u, const ss &v, sp &p, sp &q) { 
    //assert(!parallel(u, v)); 
    sp ab = u.b-u.a, cd = v.b-v.a, ac = v.a-u.a; 
    double r = (dot(ab, cd)*dot(ac, ab)-nrmsqr(ab)*dot(ac, cd)) / 
        (nrmsqr(ab)*nrmsqr(cd)-sqr(dot(ab, cd))); 
    q = v.a+(r*cd); 
    p = ptoline(q, u); 
 } 
   
 //线段到线段最短距离 
 double dissegtoseg(const ss &u, const ss &v) { 
    double res = INF; 
    res = min(res, disptoseg(u.a, v)); 
    res = min(res, disptoseg(u.b, v)); 
    res = min(res, disptoseg(v.a, u)); 
    res = min(res, disptoseg(v.b, u)); 
    if (!parallel(u, v)) { 
        sp p, q; 
        linetoline(u, v, p, q); 
        if (onseg(p, u) && onseg(q, v)) 
            res = min(res, dis(p, q)); 
    } 
    return res; 
 } 
   
 #endif
三维凸包(随机增量法)

#include <cstdio> 
 #include <cmath> 
 #include <algorithm> 
 using namespace std; 
   
 const int MAX = 1111; 
 const double EPS = 1e-8; 
   
 inline int sgn(double d) { 
     if (fabs(d) < EPS) return 0; 
     return d>0 ? 1: -1; 
 } 
   
 struct sp { 
     double x, y, z; 
     sp() {} 
     sp(double a, double b, double c): x(a), y(b), z(c) {} 
     bool read() {return scanf("%lf%lf%lf", &x, &y, &z)==3;} 
 }; 
   
 sp operator-(const sp &u, const sp &v) { 
     return sp(u.x-v.x, u.y-v.y, u.z-v.z); 
 } 
   
 double dot(const sp &u, const sp &v) { 
     return u.x*v.x+u.y*v.y+u.z*v.z; 
 } 
   
 sp det(const sp &u, const sp &v) { 
     return sp(u.y*v.z-v.y*u.z, 
             u.z*v.x-u.x*v.z, 
             u.x*v.y-u.y*v.x); 
 } 
   
 sp dir(const sp &p, const sp &u, const sp &v) { 
     return det(u-p, v-p); 
 } 
   
 double nrm(const sp &v) { 
     return sqrt(v.x*v.x+v.y*v.y+v.z*v.z); 
 } 
   
 //三角形面积*2 
 double area(const sp &a, const sp &b, const sp &c) { 
     return nrm(dir(a, b, c)); 
 } 
   
 //四面体有向体积*6 
 //正负代表p在(v-u, w-u)所确定右手系平面的方向 
 double volume(const sp &u, const sp &v, const sp &w, const sp &p) { 
     return dot(dir(u, v, w), p-u); 
 } 
   
 //四点共面(计算凸包有多少面时需要) 
 bool coplane(const sp &a, const sp &b, const sp &c, const sp &d) { 
     return sgn(dot(det(c-a, b-a), d-a))==0; 
 } 
   
 //三维凸包的表面三角形 
 struct sf { 
     int a, b, c;//三个顶点编号 
     bool ok;//面是否最终是凸包上的面 
     sf() {} 
     sf(int p, int q, int r, bool b): a(p), b(q), c(r), ok(b) {} 
 }; 
   
 struct sch3d { 
   
     int N;//初始点数 
     sp p[MAX];//初始点,注意:点顺序将被打乱! 
   
     int cnt;//凸包所有面数 
     sf f[MAX];//凸包所有面 
   
     int to[MAX][MAX];//标记数组 
   
     double dir(const sf &t, const sp &u) { 
         return ::volume(p[t.a], p[t.b], p[t.c], u); 
     } 
   
     void deal(int t, int a, int b) { 
         int fid = to[a][b]; 
         if (f[fid].ok) { 
             if (dir(f[fid], p[t]) > EPS) dfs(t, fid); 
             else { 
                 to[t][b] = to[a][t] = to[b][a] = cnt; 
                 f[cnt++] = sf(b, a, t, 1); 
             } 
         } 
     } 
   
     void dfs(int t, int cur) { 
         f[cur].ok = 0; 
         deal(t, f[cur].b, f[cur].a); 
         deal(t, f[cur].c, f[cur].b); 
         deal(t, f[cur].a, f[cur].c); 
     } 
   
     //构建三维凸包 
     void ch() { 
         cnt = 0; 
         if (N < 4) return; 
   
         int i, j, k; 
   
         //保证前四个点不共面 
         while (1) { 
             random_shuffle(p, p+N); 
             if (!::coplane(p[0], p[1], p[2], p[3])) break; 
         } 
   
         sf now; 
         for (i = 0; i < 4; ++i) { 
             now = sf(i+1&3, i+2&3, i+3&3, 1); 
             if (dir(now, p[i]) > 0) swap(now.b, now.c); 
             to[now.a][now.b] = to[now.b][now.c] = to[now.c][now.a] = cnt; 
             f[cnt++] = now; 
         } 
           
         for (i = 4; i < N; ++i) 
             for (j = 0; j < cnt; ++j) 
                 if (f[j].ok && dir(f[j], p[i])>EPS) { 
                     dfs(i, j); 
                     break; 
                 } 
   
         int tmp = cnt; 
         cnt = 0; 
         for (i = 0; i < tmp; ++i) 
             if (f[i].ok) f[cnt++] = f[i]; 
     } 
   
     //表面积 
     double area() { 
         double res = 0; 
         for (int i = 0; i < cnt; ++i) 
             res += ::area(p[f[i].a], p[f[i].b], p[f[i].c]); 
         return res/2; 
     } 
   
     //体积 
     double volume() { 
         sp o = sp(0, 0, 0); 
         double res = 0; 
         for (int i = 0; i < cnt; ++i) 
             res += ::volume(o, p[f[i].a], p[f[i].b], p[f[i].c]); 
         return fabs(res/6); 
     } 
   
     //三角形u,v共面 
     bool same(int u, int v) { 
         sp a = p[f[u].a], b = p[f[u].b], c = p[f[u].c]; 
         return ::coplane(a, b, c, p[f[v].a]) && 
             ::coplane(a, b, c, p[f[v].b]) && 
             ::coplane(a, b, c, p[f[v].c]); 
     } 
     //凸包面数 
     int facecnt() { 
         int res = 0; 
         for (int i = 0; i < cnt; ++i) { 
             bool t = 1; 
             for (int j = 0; j < i; ++j) { 
                 if (same(i, j)) { 
                     t = 0; 
                     break; 
                 } 
             } 
             res += t; 
         } 
         return res; 
     } 
 }ch3d;




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值