- 博客(68)
- 问答 (1)
- 收藏
- 关注
原创 FPGA-based Low-Cost Real-Time Face Recognition
摘要如今,人脸识别在监控、生物识别和安全方面发挥着核心作用。本文提出了一种基于现场可编程门阵列(FPGA)的低成本实时人脸识别体系结构。人脸识别模块从视频流接收检测到的人脸,并使用广泛使用的特征脸(也称为主成分分析(PCA)算法)处理数据。该架构是在一个低成本的Zynq-Z7010 FPGA上实现的。这个结构是一个系统的一部分,它能够根据初步定义的一组人脸在人群中找到人脸。未来可以将其集成到频繁拥挤场所(如机场、公交车站)的实时监控系统中,梳理出假定的威胁来源,从而降低可能发生的犯罪行为的风险。1 引言
2020-07-11 13:35:51
493
2
原创 Deep Face Recognition
摘要 这篇论文的目标是人脸识别——从一张照片或视频中跟踪的一组人脸识别。这一领域最近的进展是由于两个因素:(i)使用卷积神经网络(CNN)对任务进行端到端学习,(ii)超大规模训练数据集的可用性。 我们做了两个贡献:首先,我们展示了一个非常大规模的数据集(260万幅图像,超过2.6万名人员)是如何通过循环中的自动和人工组合来组装的,并讨论了数据纯度和时间之间的权衡;其次,我们通过深入网络训练和人脸识别的复杂性,提出了在标准LFW和YTF人脸基准上达到比较先进结果的方法和步骤。1 引言 卷积神经
2020-07-05 17:38:37
719
原创 Face R-CNN
https://arxiv.org/abs/1706.01061摘要Faster R-CNN是最具代表性和最成功的目标检测方法之一,在各种目标检测应用中得到了越来越广泛的应用。在这篇报告中,我们提出了一种基于Faster R-CNN的鲁棒深度人脸检测方法。在我们的方法中,我们开发了一些新的技术,包括新的多任务损失函数设计、在线硬示例挖掘和多尺度训练策略,以在多个方面提高R-CNN的速度。该方法非常适合于人脸检测,因此我们称之为人脸R-CNN。在两个最流行和最具挑战性的人脸检测基准FDDB和更宽的脸上进行
2020-06-30 23:31:29
739
原创 Borrowing Treasures from the Wealthy: Deep Transfer Learning through SJFT
https://arxiv.org/abs/1702.08690https://github.com/ZYYSzj/ Selective-Joint-Fine-tuning摘要 在有监督学习的过程中,深度神经网络需要大量的有标签的训练数据。然而,收集和标记如此多的数据在许多情况下可能是不可行的。在本文中,我们引入了一个深度迁移学习方案,称为选择性联合微调,以提高训练数据不足的情况下深度学习任务的性能。在该方案中,一个训练数据不足的目标学习任务与另一个训练数据充足的源学习任务同时进行。然而,源学习任务
2020-06-29 15:44:34
375
原创 (CAAE)Age Progression/Regression by Conditional Adversarial Autoencoder
https://arxiv.org/abs/1702.08423https://github.com/ZZUTK/Face-Aging-CAAE摘要“如果我给你我的脸图像(没有告诉你实际的年龄,当我把图片)和大量的图片,我爬(包含标签的面孔不同年龄但不一定配对),你能告诉我我将是什么样子当我80或5的时候我怎么样?”答案可能是否定的。“现有的大多数人脸老化工作试图学习年龄组之间的转换,因此将需要配对样本和标记查询图像。在本文中,我们从生成建模的角度来看问题,这样就不需要成对的样本。此外,对于未标记的图
2020-06-27 17:05:23
2006
3
原创 NormFace: L2 HypersphereEmbeddingforFaceVerification
https://dl.acm.org/doi/10.1145/3123266.3123359摘要由于卷积神经网络的发展,人脸验证方法的性能得到了迅速提高。在典型的人脸验证方法中,特征归一化是提高性能的关键步骤。这促使我们在训练中引入和研究归一化的效果。但我们发现这不是平凡的,尽管归一化是可微的。通过数学分析,我们发现并研究了四个与归一化有关的问题,这有助于理解和设置参数。在此基础上,我们提出了两种使用归一化特征进行训练的策略。第一个是softmax损失的修改,优化余弦相似度,而不是内积。第二种是通过为每
2020-06-26 12:44:21
483
3
原创 DeepID3: Face Recognition with Very Deep Neural Networks
https://arxiv.org/abs/1502.00873摘要随着深度学习技术的出现,人脸识别技术得到了长足的发展。极深神经网络由于其强大的学习能力,近年来在一般物体识别领域取得了巨大的成功。这一动机研究了他们对人脸识别的影响。本文提出了两种非常深的神经网络架构,称为DeepID3,用于人脸识别。这两种架构是由VGG net[10]和GoogLeNet[16]中提出的堆叠卷积和inception层重建而来,使其适合人脸识别。在训练过程中,在中间和最终特征提取层中加入联合人脸识别验证监控信号。两种体
2020-06-24 15:05:28
536
原创 A Light CNN for Deep Face Representation with Noisy Labels
https://arxiv.org/abs/1511.02683
2020-06-23 09:15:22
937
原创 Siamese Neural Networks for One-Shot Image Recognition
http://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf摘要为机器学习应用程序学习好的特征的过程可能是非常昂贵的计算,并有证据表明,可用数据很少时比较困难。这方面的一个典型例子是one-shot learning 设置,在这种设置中,我们必须正确地做出预测,只给出每个新类的单个例子。在这篇文章中,我们探索了一种学习 Siamese神经网络的方法,它采用独特的结构来自然排序输入。一旦网络被调优,我们就可以利用强大的鉴别特性将网络的预测能力泛化,不仅针对新的数据
2020-06-21 13:25:34
1266
原创 (DeepID)Deep Learning Face Representation from Predicting 10,000 Classes
https://www.researchgate.net/publication/283749931_Deep_Learning_Face_Representation_from_Predicting_10000_Classes摘要 本文提出通过深度学习来学习一组高级特征表示,称为Deep hidden IDentity features (DeepID),用于人脸验证。我们认为DeepID可以通过富有挑战性的多层次的脸识别任务有效地学习,同时他们可以推广到其他任务(如验证)和新的身份未知的训练集。此
2020-06-19 19:00:47
468
原创 L2-constrained Softmax Loss for Discriminative Face Verification
https://arxiv.org/abs/1703.09507摘要 近年来,利用深度卷积神经网络(DCNNs),人脸验证系统的性能得到了显著改善。一个典型的人脸验证流程包括:使用softmax loss训练一个用于目标分类的深度网络,使用倒数第二层输出作为特征描述子,对一组人脸图像生成余弦相似度评分。softmax loss函数没有优化特征,使正对相似度更高,负对相似度更低,这导致性能差异。在本文中,我们对特征描述符增加了一个L2约束,限制它们位于一个固定半径的超球面上。这个模块可以使用现有的深度学
2020-06-19 12:52:28
483
原创 ArcFace: AdditiveAngularMarginLossforDeepFaceRecognition
论文地址:https://arxiv.org/abs/1801.07698github:https://github.com/deepinsight/insightface摘要 使用深度卷积神经网络(DCNNs)进行大规模人脸识别的特征学习面临的主要挑战之一是其设计适当的损失函数以增强识别能力。Centre loss 惩罚是指欧氏空间中深度特征与其对应的类中心之间的距离,以实现类内紧致。SphereFace假设最后一个全连接层中的线性变换矩阵可以用来表示角空间中的类中心,并对深度特征与其对应权重之间
2020-06-18 17:45:45
544
原创 Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
https://arxiv.org/abs/1604.02878v1摘要
2020-06-17 17:59:21
1318
原创 (LMCL)CosFace: Large Margin Cosine Loss for Deep Face Recognition
论文:https://arxiv.org/pdf/1801.09414.pdf代码:https://github.com/yule-li/CosFace摘要 随着深度卷积神经网络(CNN)的快速发展,人脸识别也取得了巨大的进展。人脸识别的核心任务包括了:人脸验证(face verification)和人脸身份识别(face identification), 还涉及到人脸特征区分性。然而,深度卷积神经网络中传统的softmax loss通常存在特征区分能力不足的问题。为了解决这一点,最近研究者们提出了
2020-06-16 16:59:01
922
原创 (TP-GAN)Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity
https://arxiv.org/abs/1704.04086摘要由单一人脸图像合成逼真的正面视图在人脸识别领域有着广泛的应用。尽管数据驱动的深度学习方法已经被提出,通过从大量的面部数据中寻找解决方案来解决这个问题,但这个问题仍然具有挑战性,因为它本质上是不适定的。本文提出了一种能同时感知全局结构和局部细节的Two-Pathway生成对抗网络(TP-GAN),用于真实感正面视图的合成。除了常用的全局编码解码网络外,还提出了四种特征点定位patch网络。除了新颖的结构外,我们通过引入对抗损失、对称损失和
2020-06-15 20:59:05
708
原创 An All-In-One Convolutional Neural Network for Face Analysis
https://arxiv.org/abs/1611.00851摘要我们提出了一个多用途的算法,使用单一的深度卷积神经网络(CNN)同时进行人脸检测,人脸对齐,姿态估计,性别识别,微笑检测,年龄估计和人脸识别。本文提出的方法是一个多任务学习框架,该框架规范了CNN的共享参数,并在不同领域和任务之间建立协同作用。大量的实验表明,该网络对人脸有更好的理解,并且在大多数任务中都取得了最先进的结果。1 引言 人脸分析在人脸识别、情绪分析、生物特征分析、安全等方面都是一个具有挑战性和积极研究的问题。虽然使用
2020-06-14 23:05:47
500
原创 Joint Registration and Representation Learning for Unconstrained Face Identification
http://openaccess.thecvf.com/content_cvpr_2017/html/Hayat_Joint_Registration_and_CVPR_2017_paper.html摘要 最近在深度学习方面的进步已经使得在流行的非限制人脸数据集上的表现接近人类水平,这些数据集包括LFW和YouTube中的人脸。为了进一步推进研究,最近引入了IJB-A基准,这带来了更多的挑战,特别是在极端头部姿势的形式。这类人脸的配准要求很高,通常需要像人脸地标定位这样复杂的程序。在本文中,我们提出
2020-06-14 13:35:47
190
原创 Deep Learning Face Representation by Joint Identification-Verification
论文地址:https://arxiv.org/abs/1406.4773摘要 人脸识别的关键问题是如何发展有效的特征表示,以减少个体内部的差异,同时扩大个体间的差异。在本文中,我们证明了深度学习和使用人脸识别和验证信号作为监督可以很好地解决这个问题。深度身份验证特征(DeepID2)是通过精心设计的深度卷积网络学习到的。人脸识别任务通过分离从不同身份提取的DeepID2来增加不同人之间的差异,而人脸验证任务通过将从同一身份提取的DeepID2拉到一起来减少同一个人内部的差异,这两者对于人脸识别都是必不
2020-06-13 15:02:43
390
原创 (A-Softmax loss)SphereFace: Deep Hypersphere Embedding for Face Recognition
https://arxiv.org/abs/1704.08063
2020-06-13 00:43:46
327
原创 (center loss)A Discriminative Feature Learning Approach for Deep Face Recognition
论文地址:http://dl.icdst.org/pdfs/files1/c8edf1770d6ac7f5415f8daef7fb9bce.pdf代码:https://github.com/ydwen/caffe-face摘要 卷积神经网络(CNNs)在计算机视觉领域得到了广泛的应用,极大地提高了最先进的技术水平。在现有的网络神经网络中,大部分使用softmax损失函数作为监督信号来训练深度模型。为了提高深度学习的特征的识别能力,本文提出了一种新的人脸识别监督信号,称为中心损失。具体来说,中心损失同
2020-06-13 00:43:16
567
原创 (L-Softmax loss)Large-Margin Softmax Loss for Convolutional Neural Networks
论文地址:https://arxiv.org/abs/1612.02295摘要 交叉熵损失和softmax可能是卷积神经网络(CNNs)中最常用的监控组件之一。尽管该组件简单、常用且性能优异,但它并不显式地鼓励对特性进行有区别的学习。在本文中,我们提出了一个广义的large-margin softmax (L-Softmax)损失,该损失明显地促进了学习特征之间的类内紧致性和类间可分性。此外,L-Softmax不仅可以调整所需的边缘,还能避免过拟合。我们还表明,L-Softmax损失可以通过典型随机梯
2020-06-13 00:41:24
478
原创 A Fast and Accurate Unconstrained Face Detector
摘要 我们提出了一种方法来解决非限制人脸检测的挑战,如任意姿态变化和遮挡。首先,我们提出了一种新的图像特征,归一化像素差(NPD)。NPD特征被计算为两个像素值的差与和之比,灵感来自于实验心理学中的 Weber Fraction。该新特征具有尺度不变性、有界性,能够重建原始图像。其次,我们提出了一个深度二叉树来学习NPD特征及其组合的最优子集,从而使复杂的面流形可以用所学的规则进行划分。这样,只需要一个软级联分类器来处理非限制的人脸检测。此外,我们还证明了NPD特征可以有效地从一个查找表中得到,并且检测
2020-06-09 21:45:37
287
原创 FaceNet: A Unified Embedding for Face Recognition and Clustering
论文地址:https://arxiv.org/abs/1503.03832
2020-06-07 13:37:07
1294
原创 DeepFace: Closing the Gap to Human-Level Performance in Face Verification
论文地址:https://www.ixueshu.com/document/7ff3043ad63c70a9318947a18e7f9386.html摘要 传统的人脸识别流程有四个步骤:人脸检测——人脸对齐——人脸表达——人脸分类。为了进行分段的仿射变换,我们使用了3D的人脸建模来重现对齐和表达这两步,最终从一个9层的深度神经网络中得到了人脸的表达。这个网络并非标准的卷积网络层,而是使用了几个未共享权重的局部连接层,网络参数超过了一亿两千万个。我们在迄今为止最大的人脸数据库上训练——4000多个不同的
2020-06-06 13:46:25
1070
原创 (YOLO)You Only Look Once: Unified, Real-Time Object Detection
论文地址:https://arxiv.org/abs/1506.02640
2020-06-05 13:28:37
345
原创 (NIN)Network In Network
论文地址:https://arxiv.org/abs/1312.4400摘要 我们提出了一种新型的深度网络结构,称为“Network In Network”(NIN),它可以增强模型在感受野(receptive field)内对局部区域(local patches)的辨别能力。传统的卷积层使用线性滤波器来扫描输入,后面接一个非线性激活函数。而我们则构建了一些结构稍复杂的微型神经网络来抽象receptive field内的数据。 我们用多层感知器实例化微型神经网络,这是一种有效的函数逼近器。特征图可以通
2020-06-03 13:21:40
303
原创 (AlexNet)ImageNet Classification with Deep Convolutional Neural Networks阅读笔记
基于深度卷积神经网络的ImageNet分类论文地址:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks 原作者训练了一个大型的深度卷积神经网络,将ImageNet lsvprc -2010竞赛中的120万张高分辨率图像分类到1000个不同的类中。在测试数据上,获得了前1名和前5名的错误率,分别为37.5%和17.0%,大大优于之前的水平。该神经网络有6000万个
2020-05-30 23:47:48
451
原创 待读
[1] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In Proc. CVPR, 2015. [2] Y. Sun, X. Wang, and X. Tang. Deep learning face representation by joint identification-verification. CoRR, abs/1406
2020-05-09 18:18:13
129
空空如也
arcloss人脸识别训练不收敛
2021-05-19
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅