FIR数字滤波器C语言

1.单位冲击响应与频响

        就如同之前所说的一样,使用下图所示的单位冲击响应,所设计的滤波器,是无法实现的。


         现在,让我们看看其这个滤波器的频响。所谓频响,就是计算其单位冲击响应的离散时间傅里叶变换,


       我们可以看出,这个滤波器的频响的计算结果是实数,并没有虚数部分。也就是,其相位谱一直是0,也就意味着,这个滤波器输入与输出之间没有延迟,这种相位特性称为0延迟相位特性。

        但是,这个滤波器无法是无法实现的。我们实际计算一下该滤波器的输入输出,就可以明白。


        这个滤波器在计算的过程中,需要过去的值和未来的值。未来的值是不可预测的,所以,这个滤波器无法实现。为了使得这个滤波器可以实现,我们只好移动其单位冲击响应,使得其不再需要未来的值。比如,就像下面这样移动。


        这样的话,这个滤波器就可以实现了,我们只需要记录其40个过去的输入值和现在的输入值。但是,由于移动了其单位冲击响应,会不会对频响产生什么影响呢,我们来看看。


       为了更好的说明问题,L去代替之前例子中的20。

       移动之后频响,我们根据上面式子可以得出两个结论:1,移动不会对幅度谱产生影响。2,,移动会对相位产生一个延迟,这个延迟主要取决于移动的长度,移动的长度越长,延迟越大。但是,这个移动是线性的。

       因此,我们把这个移动的相位特性称为,线性相位特性。到这里,我们移动后的,因果的,可实现的滤波器的单位冲击响应,如下所示。


2.窗函数实现的FIR滤波器代码(C语言)

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <math.h>  
  3. #include <malloc.h>  
  4. #include <string.h>  
  5.   
  6.   
  7. #define   pi         (3.1415926)  
  8.   
  9. /*-------------Win Type----------------*/  
  10. #define   Hamming    (1)  
  11.   
  12.   
  13.   
  14. double Input_Data[] =   
  15. {  
  16. 0.000000 , 0.896802 , 1.538842 , 1.760074 ,  1.538842 ,  1.000000 ,  0.363271 , -0.142040 , -0.363271 , -0.278768,  
  17. 0.000000 , 0.278768 , 0.363271 , 0.142020 , -0.363271 , -1.000000 , -1.538842 , -1.760074 , -1.538842 , -0.896802,  
  18. 0.000000 , 0.896802 , 1.538842 , 1.760074 ,  1.538842 ,  1.000000 ,  0.363271 , -0.142040 , -0.363271 , -0.278768,  
  19. 0.000000 , 0.278768 , 0.363271 , 0.142020 , -0.363271 , -1.000000 , -1.538842 , -1.760074 , -1.538842 , -0.896802,  
  20. 0.000000 , 0.896802 , 1.538842 , 1.760074 ,  1.538842 ,  1.000000 ,  0.363271 , -0.142040 , -0.363271 , -0.278768,  
  21. 0.000000 , 0.278768 , 0.363271 , 0.142020 , -0.363271 , -1.000000 , -1.538842 , -1.760074 , -1.538842 , -0.896802,  
  22. 0.000000 , 0.896802 , 1.538842 , 1.760074 ,  1.538842 ,  1.000000 ,  0.363271 , -0.142040 , -0.363271 , -0.278768,  
  23. 0.000000 , 0.278768 , 0.363271 , 0.142020 , -0.363271 , -1.000000 , -1.538842 , -1.760074 , -1.538842 , -0.896802,  
  24. 0.000000 , 55  
  25. };  
  26.   
  27.   
  28.   
  29.   
  30. double sinc(double n)  
  31. {  
  32.     if(0==n) return (double)1;  
  33.     else return (double)(sin(pi*n)/(pi*n));  
  34. }  
  35.    
  36. int Unit_Impulse_Response(int N,double w_c,  
  37.                           int Win_Type,  
  38.                           double *Output_Data)  
  39. {  
  40.     signed int Count = 0;   
  41.     
  42.     for(Count = -(N-1)/2;Count <= (N-1)/2;Count++)  
  43.     {  
  44.         *(Output_Data+Count+((N-1)/2)) = (w_c/pi)*sinc((w_c/pi)*(double)(Count));  
  45.         //printf("%d %lf  ",Count+((N-1)/2)+1,*(Output_Data+Count+((N-1)/2)));  
  46.         //if(Count%4 == 0) printf("\n");  
  47.     }     
  48.       
  49.       
  50.     switch (Win_Type)  
  51.     {  
  52.           
  53.         case Hamming:   printf("Hamming \n");  
  54.                         for(Count = -(N-1)/2;Count <= (N-1)/2;Count++)  
  55.                 {  
  56.                     *(Output_Data+Count+((N-1)/2)) *= (0.54 + 0.46 * cos((2*pi*Count)/(N-1)));  
  57.                     //printf("%d %lf  ",Count+((N-1)/2)+1,*(Output_Data+Count+((N-1)/2)));  
  58.                     //if(((Count+1)%5 == 0)&&(Count != -20)) printf("\n");  
  59.             }   
  60.                         break;  
  61.                           
  62.                           
  63.         default:        printf("default Hamming \n");  
  64.                         for(Count = -(N-1)/2;Count <= (N-1)/2;Count++)  
  65.                 {  
  66.                     *(Output_Data+Count+((N-1)/2)) *= (0.54 + 0.46 * cos((2*pi*Count)/(N-1)));  
  67.                     //printf("%d %lf  ",Count+((N-1)/2)+1,*(Output_Data+Count+((N-1)/2)));  
  68.                     //if(((Count+1)%5 == 0)&&(Count != -20)) printf("\n");  
  69.             }   
  70.           
  71.                         break;  
  72.     }  
  73.       
  74.     return (int)1;  
  75. }  
  76.   
  77.   
  78. void Save_Input_Date (double Scand,  
  79.                       int    Depth,  
  80.                       double *Input_Data)  
  81. {  
  82.     int Count;  
  83.     
  84.     for(Count = 0 ; Count < Depth-1 ; Count++)  
  85.     {  
  86.         *(Input_Data + Count) = *(Input_Data + Count + 1);  
  87.     }  
  88.       
  89.     *(Input_Data + Depth-1) = Scand;  
  90. }  
  91.   
  92.   
  93.   
  94. double Real_Time_FIR_Filter(double *b,  
  95.                             int     b_Lenth,  
  96.                             double *Input_Data)  
  97. {      
  98.     int Count;  
  99.     double Output_Data = 0;  
  100.       
  101.     Input_Data += b_Lenth - 1;    
  102.       
  103.     for(Count = 0; Count < b_Lenth ;Count++)  
  104.     {         
  105.             Output_Data += (*(b + Count)) *  
  106.                             (*(Input_Data - Count));                           
  107.     }           
  108.       
  109.     return (double)Output_Data;  
  110. }  
  111.   
  112.   
  113.   
  114.   
  115.   
  116. int main(void)  
  117. {  
  118.     double w_p = pi/10;  
  119.     double w_s = pi/5;  
  120.     double w_c = (w_s + w_p)/2;  
  121.     printf("w_c =  %f \n" , w_c);  
  122.       
  123.     int N = 0;    
  124.     N = (int) ((6.6*pi)/(w_s - w_p) + 0.5);  
  125.     if(0 == N%2) N++;      
  126.     printf("N =  %d \n" , N);      
  127.     
  128.     double *Impulse_Response;          
  129.     Impulse_Response = (double *) malloc(sizeof(double)*N);    
  130.     memset(Impulse_Response,  
  131.            0,  
  132.            sizeof(double)*N);  
  133.              
  134.     Unit_Impulse_Response(N,w_c,  
  135.                           Hamming,  
  136.                           Impulse_Response);         
  137.   
  138.     double *Input_Buffer;  
  139.     double Output_Data = 0;  
  140.     Input_Buffer = (double *) malloc(sizeof(double)*N);    
  141.     memset(Input_Buffer,  
  142.            0,  
  143.            sizeof(double)*N);  
  144.     int Count = 0;  
  145.       
  146.     FILE *fs;   
  147.     fs=fopen("FIR_Data.txt","w");   
  148.       
  149.     while(1)  
  150.     {     
  151.         if(Input_Data[Count] == 55) break;  
  152.            
  153.         Save_Input_Date (Input_Data[Count],  
  154.                      N,  
  155.                      Input_Buffer);  
  156.          
  157.         Output_Data = Real_Time_FIR_Filter(Impulse_Response,  
  158.                                            N,  
  159.                                            Input_Buffer);  
  160.                           
  161.             
  162.         fprintf(fs,"%lf,",Output_Data);  
  163.         //if(((Count+1)%5 == 0)&&(Count != 0))  fprintf(fs,"\r\n");   
  164.      
  165.         Count++;  
  166.     }  
  167.             
  168.     /*---------------------display--------------------------------      
  169.     for(Count = 0; Count < N;Count++) 
  170.     { 
  171.         printf("%d %lf  ",Count,*(Input_Buffer+Count)); 
  172.         if(((Count+1)%5 == 0)&&(Count != 0)) printf("\n");            
  173.     }       
  174.     */    
  175.       
  176.     fclose(fs);  
  177.     printf("Finish \n");  
  178.     return (int)0;  
  179. }  


3.频响的问题

        按照上面程序,参数如下设定。

   

        运行程序,我们就实现了一个FIR滤波器。我们使用Matlab做出其频响。

        

        好了,这里可以看出,从其幅度特性看来,我们确实实现了一个低通滤波器。但是,相位特性就比较奇怪(为了方便看出问题,我已经进行了解卷绕,至于什么是解卷绕,为什么要解卷绕,之后会说)。

       那么,问题来了!按照道理来说,这个FIR滤波器应该是拥有线性相位特性的,但是为什么这里的线性相位特性确不是一条直线!在接近于阻带起始频率的地方,有什么会震荡?这个问题,之后再解决吧。

      [数字信号处理]相位特性解卷绕   <-----------戳我


4.实际的滤波效果

       为了验证效果,我们输入实际的信号看看。这里,我们选择采样周期为10ms,那么,其通带频率和阻带起始频率为


       为了验证其性质,我选择了1KHz和3KHz的频率混合,最终输出。输入的波形如下。


      其输出波形是如下。

        红色的“+”是Matlab计算的结果,黑的o是我用C语言实现的滤波器的计算结果,蓝的*号是1KHz的信号,也就是希望的输出。可以看出,这个滤波器有一定的延迟,但是滤波效果还是不错。

       from: http://blog.csdn.net/thnh169/
FIR带通滤波器是一种常见的数字滤波器,可以在频域上选择一定范围内的频率进行滤波处理。其原理是通过对输入信号的每个采样点进行加权求和的方式实现滤波效果。 在C语言中实现FIR带通滤波器,可以按照以下步骤进行: 1. 定义滤波器的系数数组:根据设计要求,选择一组合适的FIR滤波器系数,可以通过一些滤波器设计工具或者使用经验公式得到。 2. 定义输入和输出的缓冲数组:根据实际应用场景的采样率和信号长度,定义输入和输出信号的缓冲数组。 3. 实现滤波器的计算过程:使用一个循环结构,对输入信号的每个采样点进行滤波计算。在每个采样点上,按照系数数组的长度,对输入信号和系数数组进行加权求和操作,得到输出信号的一个采样点。 4. 更新输入信号缓冲数组:在每次计算完一个采样点之后,需要更新输入信号缓冲数组,以便继续计算下一个采样点的输出。 5. 返回输出信号:当处理完所有输入信号的采样点之后,将输出信号返回给调用者。 需要注意的是,在实际的应用中,FIR带通滤波器的系数和输入信号的采样点可能会很大,因此需要优化算法的性能和效率,例如可以使用快速傅里叶变换(FFT)等技术来加速计算过程。 总的来说,用C语言实现FIR带通滤波器,需要定义滤波器系数、输入和输出缓冲数组,并通过循环结构对每个采样点进行滤波计算,最后返回输出信号。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值