AK F.*ing leetcode 流浪计划之欧拉筛选素数

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

素数筛选

素数筛选的基本过程就是从小到大遍历数字,如果之前没有被标记过,就是素数。然后拿当前遍历数字的倍数去标记成合数。效率的核心就是如何拿已经遍历过的数字去筛选掉合数。

简单倍数法


bool isPrime[100000010] = { 0 };
//isPrime[i] == 1表示:i是素数
int Prime[6000010], cnt = 0;
//Prime存质数

void simplePrime(int n) {
	cnt = 0;
	memset(isPrime, 1, sizeof(isPrime));
	isPrime[1] = 0;
	for (lld i = 2; i <= n; ++i) {
		if (isPrime[i]) Prime[cnt++] = i;
		for (lld j = 2; j*i<=n; ++j) {
			isPrime[i*j] = 0;
		}
	}
}

利用素数优化步长

上述算法中里面一层循环会对同一个合数筛选多次。
比如n=20;

ii*j
24,6,8,10,12,14,16,18,20
36,9,12,15,18
48,12,16,20
510,15,20
612,18
714
816
918
1020

i超过10以后就没有筛选到合数了。
上面表格中有很多重复的合数。
可以减少j的枚举量来优化。

我们知道一个合数x肯定可以拆解成一个素数m乘以另一个数p.
x = m ∗ p ( 其 m 是素数, m < = n , p > 1 ) x = m*p(其m是素数,m<=\sqrt{n}, p>1) x=mp(m是素数,m<=n ,p>1)
所以,j可以只枚举已经得到的素数。

void simplePrime(int n) {
	cnt = 0;
	memset(isPrime, 1, sizeof(isPrime));
	isPrime[1] = 0;
	for (lld i = 2; i <= n; ++i) {
		if (isPrime[i]) Prime[cnt++] = i;
		// 只枚举已知的素数
		for (int j = 0; j < cnt && 1LL * i * Prime[j] <= n;++j) {
			isPrime[1LL * i * Prime[j]] = 0;
		}
	}
}

欧拉筛思路

再次对上述算法进行模拟
n=20;

ii*Prime[j]
24
36,9
48,12
510,15
612,18
714
816
918
1020

这次改进后,筛选合数的次数比直接倍数法减少了很多,但是还有重复筛选,一旦数量多了以后也会影响时间复杂度。

上述算法会导致重复的原因如下:
设 x = p 0 s 0 ⋅ p 1 s 1 . . . p n s n , p i 为质数,那么 x 就有可能被每个质数筛选到 设x=p_0^{s_0}\cdot p_1^{s_1}...p_n^{s_n}, p_i为质数,那么x就有可能被每个质数筛选到 x=p0s0p1s1...pnsn,pi为质数,那么x就有可能被每个质数筛选到

欧拉筛选法希望每一个合数只被最小的质数筛选到,也就是上述过程中最小的p0筛选。
把 x 拆成 x = p 0 ⋅ p 0 s 0 − 1 ⋅ p 1 s 1 . . . p n s n 把x拆成 x = p_0 \cdot p_0^{s_0-1}\cdot p_1^{s_1}...p_n^{s_n} x拆成x=p0p0s01p1s1...pnsn

对应到上述代码中就是Prime[j]不能在i作为因子中出现过。


bool isPrime[100000010] = { 0 };
//isPrime[i] == 1表示:i是素数
int Prime[6000010], cnt = 0;
//Prime存质数

void initPrime(int n) {
	cnt = 0;
	memset(isPrime, 1, sizeof(isPrime));
	isPrime[1] = 0;
	for (int i = 2; i <= n; ++i) {
		if (isPrime[i]) Prime[cnt++] = i;
		for (int j = 0; j < cnt && i * Prime[j] <= n; ++j) {
			isPrime[i * Prime[j]] = 0;
			if (i % Prime[j] == 0)break;
		}
	}
}

正确性证明:

完备性:每个合数都会被筛选到
假设x=p*h, p 是x最小质因子,h>1。

当i=h时,Prime[j]在到达p之前肯定不会退出循环,保证了完备性。

唯一性:每个合数只会被筛选一次
反证法:
假设x=ph, p 是x最小质因子,h>1,p1>p。
x是不可能被p1
h1筛选到,因为h1中必然有p因子,所以Prime[j]会到达p时就会退出。

故x只会被p*h筛选掉,只会筛选一次。根据这个结论可以得出欧拉筛的最复杂度是O(n)的。

求解积性函数应用

积性函数指对于所有互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数。

欧拉函数

定义与公式

欧拉函数 φ ( x ) 定义为所有小于等 x 正整数中与 x 最大公约数为 1 的个数 欧拉函数 \varphi(x) 定义为所有小于等x正整数中与x最大公约数为1的个数 欧拉函数φ(x)定义为所有小于等x正整数中与x最大公约数为1的个数
欧拉函数公式

φ ( x ) = { 1 x = 1 x − 1 x 是素数 x ⋅ ∏ p i ∣ x p i − 1 p i x > 1 , p i 是 x 的质因子 \varphi(x) = \left \{\begin{array}{lc}1&x=1\\ x-1& x是素数\\x\cdot \displaystyle \prod_{p_i|x} \frac{p_i-1}{p_i}&x>1, p_i是x的质因子\end{array} \right. φ(x)= 1x1xpixpipi1x=1x是素数x>1,pix的质因子

欧拉筛过程中求解欧拉函数

在程序运行过程中,我们可以知道每个合数被拆解的情况。

令 P ( x ) = ∏ p i ∣ x p i − 1 p i 令P(x) = \displaystyle \prod_{p_i|x} \frac{p_i-1}{p_i} P(x)=pixpipi1

x = p ∗ h , p 是质数 , φ ( h ) = h ∗ P ( h ) 是已经算出来了 , 也可以求得 P ( h ) = φ ( h ) / h x=p*h, p是质数, \varphi(h)=h*P(h)是已经算出来了, 也可以求得P(h) = \varphi(h)/h x=ph,p是质数,φ(h)=hP(h)是已经算出来了,也可以求得P(h)=φ(h)/h

如果 p 是 h 质因子,那么 P ( x ) = P ( h ) , φ ( x ) = φ ( h ) / h ∗ x = φ ( h ) ∗ p 如果p是h质因子,那么P(x)=P(h), \varphi(x) = \varphi(h)/h*x= \varphi(h)*p 如果ph质因子,那么P(x)=P(h),φ(x)=φ(h)/hx=φ(h)p

如果 p 不是 h 质因子,那么 P ( x ) = P ( h ) ∗ p − 1 p , φ ( x ) = φ ( h ) / h ∗ p − 1 p ∗ ( p ∗ h ) = φ ( h ) ∗ ( p − 1 ) 如果p不是h质因子,那么P(x)=P(h)*\frac{p-1}{p}, \varphi(x) =\varphi(h)/h*\frac{p-1}{p}*(p*h)= \varphi(h)*(p-1) 如果p不是h质因子,那么P(x)=P(h)pp1,φ(x)=φ(h)/hpp1(ph)=φ(h)(p1)


bool isPrime[100000010] = { 0 };
//isPrime[i] == 1表示:i是素数
int Prime[6000010], cnt = 0;
//Prime存质数
lld phi[N] = { 0 };

void initPrime(int n) {
	cnt = 0;
	memset(isPrime, 1, sizeof(isPrime));
	isPrime[1] = 0;
	phi[1] = 1;
	for (int i = 2; i <= n; ++i) {
		if (isPrime[i]) {
			Prime[cnt++] = i;
			phi[i] = i - 1;
		}
		for (int j = 0; j < cnt && i * Prime[j] <= n; ++j) {
			isPrime[i * Prime[j]] = 0;
			if (i % Prime[j] == 0) {
				phi[i * Prime[j]] = phi[i] * (Prime[j]);
				break;
			}
			else {
				phi[i * Prime[j]] = phi[i] * (Prime[j]-1);
			}
		}
	}
}


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值