Spark大数据-输入源之RDD队列流
RDD队列流
每隔一秒创建一个RDD扔到队列中,spark streaming每隔两秒从队列流中处理一次,对队列RDD中的每个数做余数词频统计。
// 每隔1秒创建一个RDD,Streaming每隔2秒就对数据进行处理
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.{Seconds, StreamingContext}
object QueueStream {
def main(args: Array[String]) {
StreamingExamples.setStreamingLogLevels()
// 创建ssc
val sparkConf = new SparkConf().setAppName("TestRDDQueue").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(2))
// 创建RDD队列
val rddQueue =new scala.collection.mutable.SynchronizedQueue[RDD[Int]]()
// 创建队列输入流
val queueStream = ssc.queueStream(rddQueue)
val mappedStream = queueStream.map(r => (r % 10, 1))
val reducedStream = mappedStream.reduceByKey(_ + _)
reducedStream.print()
ssc.start()
// 往队列流中添加RDD
for (i <- 1 to 10){
// 1~100,生成一个RDD,2个分区
rddQueue += ssc.sparkContext.makeRDD(1 to 100,2)
Thread.sleep(1000)
}
ssc.stop()
}
}
QueueStream.main(Array())
打包编译运行过程类似于套接字流。