接上面一部分的讨论,在二次方情况下的演算如下:
G= M *x^n [x*x*{ A *(n+2)*(n+2) + B *(n+2) } ] +
N* x^n [x * { A *(n+1)*(n+1) + B *(n+1) } ] +
R *x^ n [ { A * n *n + B * n } ]
//去掉B*n项目
=M *x^n [x*x*{ A *(n+2)*(n+2) + B *2 } ] +
N* x^n [x * { A *(n+1)*(n+1) + B *1 } ] +
R *x^ n [ { A * n *n } ]
=M *x^n [x*x*{ A *(n*n+4*n+4 ) + B *2 } ] +
N* x^n [x * { A *(n*n+2*n+1) + B *1 } ] +
R *x^ n [ { A * n *n } ]
//曲调n*n项目
=M *x^n [x*x*{ A *(4*n+4 ) + B *2 } ] +
N* x^n [x * { A *(2*n+1) + B *1 } ]
//注意在这里应用上一小节的假设条件,可以消除两个项目
=M *x^n [x*x*{ A *(4 ) } ] &