非齐次线形差分方程的两种情况下通解的求法2

本文详细介绍了非齐次线性差分方程在存在同根和不存在同根两种情况下的通解求法。通过特定的代数操作,简化方程,最终得出A和B的值,提供了解决这类问题的公式,并给出了两个具体方程的解。
摘要由CSDN通过智能技术生成

接上面一部分的讨论,在二次方情况下的演算如下:

G= M *x^n  [x*x*{ A *(n+2)*(n+2)  + B *(n+2) }  ]     +

       N* x^n  [x *  { A *(n+1)*(n+1)  + B *(n+1) }  ]     +

       R *x^ n  [   {  A  * n  *n  +  B * n }  ]

//去掉B*n项目

 

 =M *x^n  [x*x*{ A *(n+2)*(n+2)  + B *2 }  ]     +

       N* x^n  [x *  { A *(n+1)*(n+1)  + B *1 }  ]     +

       R *x^ n  [   {  A  * n  *n   }  ]

=M *x^n  [x*x*{ A *(n*n+4*n+4 )  + B *2 }  ]     +

       N* x^n  [x *  { A *(n*n+2*n+1)  + B *1 }  ]     +

       R *x^ n  [   {  A  * n  *n   }  ]

//曲调n*n项目

 

=M *x^n  [x*x*{ A *(4*n+4 )  + B *2 }  ]     +

       N* x^n  [x *  { A *(2*n+1)  + B *1 }  ]   

 

//注意在这里应用上一小节的假设条件,可以消除两个项目

 

=M *x^n  [x*x*{ A *(4 )  }  ]     &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值