组合周期数列的证明

组合周期数列的证明
在周期数列的基础上,考虑这样一个问题,当k取不同的值,并且乘以不同的常数,然后将这些序列加在一起,生成的新序列的周期还是M的约数。
这个问题实际上是求一个数的几个约数的最小公倍数还是这个数的约数的问题。这个是显然的:
6的约数2,3,最小公倍数还是6,是6的约数
6的约数1,3,最小公倍数还是3,是6的约数
6的约数1,6,最小公倍数还是6,是6的约数

引用但是具体的周期数并没有给出。如果需要得到特定模数下的周期数,可以使用暴力求解的方式来求出周期数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python初学者笔记:打印出斐波那契数列的前10项](https://blog.csdn.net/weixin_39907713/article/details/110324455)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [na(斐波那契数列对于的模的周期性)](https://blog.csdn.net/qq_35914587/article/details/78077911)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [斐波那契数列性质总结](https://blog.csdn.net/m0_37109329/article/details/78481951)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值