函数的周期性

前言

当你学习了本篇博文后,如果感觉还需要深入学习,可以阅读函数的奇偶性周期性习题

周期概念

(1). 周期函数:对于函数 y = f ( x ) y=f(x) yf(x),如果存在一个非零常数 T T T,使得当 x x x 取定义域内的任何值时,都有 f ( x + T ) f(x+T) f(x+T) = = = f ( x ) f(x) f(x),那么1就称函数 y = f ( x ) y=f(x) yf(x) 为周期函数,称 T T T 为这个函数的周期。

比如,函数 y = f ( x ) = sin ⁡ x y=f(x)=\sin x y=f(x)=sinx,由于 x ∈ R x\in R xR,则 x + 4 π ∈ R x+4\pi\in R x+4πR,且对任意 x x x 都满足 sin ⁡ ( x + 4 π ) = sin ⁡ x \sin(x+4\pi)=\sin x sin(x+4π)=sinx,故 函数 y y y = = = f ( x ) f(x) f(x) = = = sin ⁡ \sin sin x x x是周期函数, 4 π 4\pi 4π 为它的一个周期。

(2). 最小正周期:如果在周期函数 f ( x ) f(x) f(x) 的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f ( x ) f(x) f(x) 的最小正周期。

理解概念中的关键词,知道有些函数如 f ( x ) f(x) f(x) = = = 2 x 2^x 2x 不是周期函数,有些函数仅有正周期如 f ( x ) f(x) f(x) = = = s i n x sinx sinx x ∈ [ 0 , + ∞ ) x\in[0,+\infty) x[0+) 或者仅有负周期;

常函数 f ( x ) f(x) f(x) = = = c c c( c c c为常数) 没有最小正周期,如 f ( x ) = c f(x)=c f(x)=c ,则 f ( x + T ) f(x+T) f(x+T) = = = c c c ,此时的 T T T 没有最小的正数。

函数的周期性从数上理解,是说函数的自变量 x x x 增加 T T T 后,函数值重复出现;从形上理解,是说函数的图象左右平移 T T T 后,函数的图象和原图象重合。

常见方式

  • 以图像的形式给出;

解读图像,从图像中我们就可以找出周期 T T T

  • 以周期的定义式给出;

常见定义式: f ( x + 4 ) = f ( x ) ⟹ T = 4 f(x+4)=f(x)\Longrightarrow T=4 f(x+4)=f(x)T=4

定义式的常见变形: f ( x + 2 ) = f ( x − 2 ) f(x+2)=f(x-2) f(x+2)=f(x2)或者 f ( x + 3 ) = f ( x − 1 ) ⟹ T = 4 f(x+3)=f(x-1) \Longrightarrow T=4 f(x+3)=f(x1)T=4

函数 f ( x + 1 ) f(x+1) f(x+1) 是周期为 2 2 2 的周期函数,故 f ( x ) f(x) f(x) 也是周期为 2 2 2 的周期函数,又或函数 f ( x ) f(x) f(x) 是周期为 2 2 2 的周期函数,则 f ( x + 1 ) f(x+1) f(x+1) 也是周期为 2 2 2 的周期函数,

  • 以周期性的结论给出(不妨设 a > 0 a>0 a>0);

结论1: f ( x + a ) = − f ( x ) f(x+a)=-f(x) f(x+a)=f(x)或者变形 f ( x + a ) + f ( x ) = 0 ⟹ T = 2 a f(x+a)+f(x)=0\Longrightarrow T=2a f(x+a)+f(x)=0T=2a;推导:2

引申1: f ( x + a ) = b − f ( x ) f(x+a)=b-f(x) f(x+a)=bf(x)或者变形 f ( x + a ) + f ( x ) = b ⟹ T = 2 a f(x+a)+f(x)=b\Longrightarrow T=2a f(x+a)+f(x)=bT=2a;推导:3

结论2: f ( x + a ) = k f ( x ) ( k ≠ 0 ) f(x+a)=\cfrac{k}{f(x)}(k\neq 0) f(x+a)=f(x)k(k=0)或者变形 f ( x + a ) ⋅ f ( x ) = k ⟹ T = 2 a f(x+a)\cdot f(x)=k \Longrightarrow T=2a f(x+a)f(x)=kT=2a;推导:4

  • 以三个连续自变量的形式给出

给出表达式: f ( x + 2 ) = f ( x + 1 ) − f ( x ) ⟹ f ( x + 3 ) = − f ( x ) ⟹ T = 6 f(x+2)=f(x+1)-f(x)\Longrightarrow f(x+3)=-f(x)\Longrightarrow T=6 f(x+2)=f(x+1)f(x)f(x+3)=f(x)T=6;推导:5

  • 以奇偶性和对称性结合形式给出周期性;

引例,已知函数 f ( x ) f(x) f(x)是奇函数,且满足 f ( 2 − x ) = f ( x ) f(2-x)=f(x) f(2x)=f(x),则可知函数的周期 T = 4 T=4 T=4;推导:6

  • 以轴对称和中心对称结合形式给出周期性;

引例,已知函数 f ( x ) f(x) f(x)的图像关于点 ( 3 , 0 ) (3,0) (3,0)对称,且满足 f ( 2 − x ) = f ( x ) f(2-x)=f(x) f(2x)=f(x),则可知函数的周期 T = 8 T=8 T=8;推导:7

  • 以和为定值的方式给出;

引例,函数 f ( x ) f(x) f(x) 满足 f ( x ) + f ( x + 1 ) + f ( x + 2 ) f(x)+f(x+1)+f(x+2) f(x)+f(x+1)+f(x+2)为定值 a a a,则函数 f ( x ) f(x) f(x) 为周期函数;8

其他方式

  • 分段函数的部分周期性

如已知 f ( x ) f(x) f(x)的定义域为 R R R,且 f ( x ) = { 2 − x − 1 , x ≤ 0 f ( x − 1 ) , x > 0 f(x)=\begin{cases}2^{-x}-1,&x\leq 0 \\f(x-1),&x>0\end{cases} f(x)={2x1f(x1)x0x>0

则函数在 x < 0 x<0 x<0上没有周期性,但是在 x > 0 x>0 x>0上有周期性,周期是 T = 1 T=1 T=1

  • 以赋值法的模式给出

比如表达式: f ( x + 6 ) = f ( x ) + f ( 3 ) f(x+6)=f(x)+f(3) f(x+6)=f(x)+f(3),且 f ( x ) f(x) f(x)为偶函数, ⟹ T = 6 \Longrightarrow T=6 T=6(赋值法);9

  • 以赋值法[更难]的模式给出

引例:已知函数 f ( x ) f(x) f(x)满足 f ( 1 ) = 1 2 f(1)=\cfrac{1}{2} f(1)=21,且 f ( x + y ) + f ( x − y ) = 2 f ( x ) f ( y ) f(x+y)+f(x-y)=2f(x)f(y) f(x+y)+f(xy)=2f(x)f(y),求 f ( 0 ) + f ( 1 ) + f(0)+f(1)+ f(0)+f(1)+ f ( 2 ) + f(2)+ f(2)+ ⋯ + \cdots+ + f ( 2016 ) f(2016) f(2016)的值。10

  • 以综合表达式的形式给出;

比如给出 f ( x + 2 ) = 1 2 f ( x ) f(x+2)=\cfrac{1}{2}f(x) f(x+2)=21f(x),意味着周期性和伸缩性同时起作用。

  • 以新定义和函数的迭代形式给出:

【2020届宝鸡质检2文数第16题】若 f ( n ) f(n) f(n) n 2 n^2 n2 + + + 1 1 1( n n n ∈ \in N ∗ ) N^*) N)的各位数字之和,如 1 4 2 14^2 142 + + + 1 1 1 = = = 197 197 197,则 f ( 14 ) f(14) f(14) = 1 =1 =1 + + + 9 9 9 + + + 7 7 7 = = = 17 17 17;记 f 1 ( n ) f_1(n) f1(n) = = = f ( n ) f(n) f(n) f 2 ( n ) f_2(n) f2(n) = = = f ( f 1 ( n ) ) f(f_1(n)) f(f1(n)) f 3 ( n ) f_3(n) f3(n) = = = f ( f 2 ( n ) ) f(f_2(n)) f(f2(n)) ⋯ \cdots f k + 1 ( n ) f_{k+1}(n) fk+1(n) = = = f ( f k ( n ) ) f(f_k(n)) f(fk(n)) k ∈ N ∗ k∈N^* kN,则 f 2020 ( 8 ) f_{2020}(8) f2020(8)= _________ .

分析:本题目属于新定义题目,融合考查函数的周期性;

由题目的定义可知, f ( 8 ) f(8) f(8)表示的是 8 2 + 1 8^2+1 82+1的各位数字之和,

由于 8 2 + 1 = 65 8^2+1=65 82+1=65,则 f ( 8 ) = 6 + 5 = 11 f(8)=6+5=11 f(8)=6+5=11,这样 f 1 ( 8 ) = f ( 8 ) = 6 + 5 = 11 f_1(8)=f(8)=6+5=11 f1(8)=f(8)=6+5=11

由于 1 1 2 + 1 = 122 11^2+1=122 112+1=122,则 f ( 11 ) = 1 + 2 + 2 = 5 f(11)=1+2+2=5 f(11)=1+2+2=5,故 f 2 ( 8 ) = f ( f 1 ( 8 ) ) = f ( 11 ) = 1 + 2 + 2 = 5 f_2(8)=f(f_1(8))=f(11)=1+2+2=5 f2(8)=f(f1(8))=f(11)=1+2+2=5

由于 5 2 + 1 = 26 5^2+1=26 52+1=26,则 f 3 ( 8 ) = f ( f 2 ( 8 ) ) = f ( 5 ) = 2 + 6 = 8 f_3(8)=f(f_2(8))=f(5)=2+6=8 f3(8)=f(f2(8))=f(5)=2+6=8

由于 8 2 + 1 = 65 8^2+1=65 82+1=65,故 f 4 ( 8 ) = f ( f 3 ( 8 ) ) = f ( 8 ) = 6 + 5 = 11 f_4(8)=f(f_3(8))=f(8)=6+5=11 f4(8)=f(f3(8))=f(8)=6+5=11

由于 1 1 2 + 1 = 122 11^2+1=122 112+1=122,故 f 5 ( 8 ) = f ( f 4 ( 8 ) ) = f ( 11 ) = 1 + 2 + 2 = 5 f_5(8)=f(f_4(8))=f(11)=1+2+2=5 f5(8)=f(f4(8))=f(11)=1+2+2=5

故函数 f n ( 8 ) f_n(8) fn(8)的周期 T = 3 T=3 T=3 f 2020 ( 8 ) = f 673 × 3 + 1 ( 8 ) = f 1 ( 8 ) = f ( 8 ) = 11 f_{2020}(8)=f_{673\times 3+1}(8)=f_1(8)=f(8)=11 f2020(8)=f673×3+1(8)=f1(8)=f(8)=11;

故答案为 11 11 11.

数列周期

  • 由于数列是特殊的函数,故数列的周期推导过程其实也与函数的周期推导是一致的。

比如数列 { a n } \{a_n\} {an}满足关系: a n + 2 = a n + 1 − a n a_{n+2}=a_{n+1}-a_n an+2=an+1an,则可以推出数列的周期 T = 6 T=6 T=6

解释: f ( n + 2 ) = f ( n + 1 ) − f ( n ) ⟹ f ( n + 3 ) = − f ( n ) ⟹ T = 6 f(n+2)=f(n+1)-f(n)\Longrightarrow f(n+3)=-f(n)\Longrightarrow T=6 f(n+2)=f(n+1)f(n)f(n+3)=f(n)T=6

另类应用既然图像的左右平移可能会体现周期性,那么当我们需要函数图像左右平移时,自然也可以使用周期性来刻画,从而实现形向数的转化。

比如,写出一个图象关于直线 x = 2 x=2 x2 对称且在 [ 0 , 2 ] [0, 2] [0,2] 上单调递增的偶函数 f ( x ) f(x) f(x)=___________.

详析: 由 [ 0 , 2 ] [0, 2] [0,2] 上单调递增,借助几何直观,我们会想到做一条线段,最简单的如 y = x y=x y=x ,又由于图象关于直线 x = 2 x=2 x2 对称,故在 [ 2 , 4 ] [2, 4] [2,4] 上做线段 y = 4 − x y=4-x y=4x,又由于是偶函数,则将 [ 0 , 4 ] [0, 4] [0,4] 上的图像关于 y y y 轴对称到 [ − 4 , 0 ] [-4, 0] [4,0] 上,即得到了满足题意的函数图像的大致图样,但问题随之来了,怎么用解析式来刻画这个函数呢,硬着头皮上,将我们刚才想到的图像数字化,比如 [ 0 , 4 ] [0, 4] [0,4] 上可以用两个分段函数组合,比如 y = x , x ∈ [ 0 , 2 ] y=x,x\in [0,2] y=x,x[0,2] y = 4 − x , x ∈ ( 2 , 4 ] y=4-x,x\in(2,4] y=4x,x(2,4],其中 [ − 4 , 0 ) [-4,0) [4,0)上利用对称求得解析式即可,最后用四段的分段函数表达即可,但我们感觉拉跨,此时可以观察 [ 0 , 4 ] [0, 4] [0,4] 上的图像是 绝对值函数 y = ∣ x ∣ y=|x| y=x 倒扣加上平移得到的,故想到 x ∈ [ 0 , 4 ] x\in[0,4] x[0,4] 时, y = 2 − ∣ x − 2 ∣ y=2-|x-2| y=2x2∣,那么 x ∈ [ − 4 , 0 ) x\in[-4,0) x[4,0) 上可以利用 y = f ( − x ) y=f(-x) y=f(x) 来表达,但问题又来了,函数不满足对称性,因为是定义在 [ − 4 , 4 ] [-4,4] [4,4]上的,并不关于 y = 2 y=2 y=2对称,我们需要将基本图像( [ 0 , 4 ] [0,4] [04]这一段上的图像)向左右按周期的整数倍无限延伸才行,故采用周期的表达即可,

故得到满足题意的函数为 f ( x ) = { 2 − ∣ x − 2 ∣ , x ∈ [ 0 , 4 ] f ( x − 4 ) , x > 4 f ( x + 4 ) , x < − 4 f(x)=\left\{\begin{array}{l}2-|x-2|,&x\in[0,4]\\f(x-4),&x>4\\f(x+4),&x<-4\end{array}\right. f(x)= 2x2∣f(x4)f(x+4)x[0,4]x>4x<4

周期补遗

  • 以下的给出方式,极其少见,仅仅作整理之用,不需要太过理会。

① 已知 f ( x + a ) = 1 − f ( x ) 1 + f ( x ) f(x+a)=\cfrac{1-f(x)}{1+f(x)} f(x+a)=1+f(x)1f(x),则周期为 T = 2 a T=2a T=2a

[推导过程]:由于 f ( x + a ) = 1 − f ( x ) 1 + f ( x ) f(x+a)=\cfrac{1-f(x)}{1+f(x)} f(x+a)=1+f(x)1f(x)

f ( x + 2 a ) = f [ ( x + a ) + a ] = 1 − f ( x + a ) 1 + f ( x + a ) = 1 − 1 − f ( x ) 1 + f ( x ) 1 + 1 − f ( x ) 1 + f ( x ) f(x+2a)=f[(x+a)+a]=\cfrac{1-f(x+a)}{1+f(x+a)}=\cfrac{1-\frac{1-f(x)}{1+f(x)}}{1+\frac{1-f(x)}{1+f(x)}} f(x+2a)=f[(x+a)+a]=1+f(x+a)1f(x+a)=1+1+f(x)1f(x)11+f(x)1f(x)

= [ 1 − 1 − f ( x ) 1 + f ( x ) ] [ 1 + f ( x ) ] [ 1 + 1 − f ( x ) 1 + f ( x ) ] [ 1 + f ( x ) ] = f ( x ) =\cfrac{[1-\frac{1-f(x)}{1+f(x)}][1+f(x)]}{[1+\frac{1-f(x)}{1+f(x)}][1+f(x)]}=f(x) =[1+1+f(x)1f(x)][1+f(x)][11+f(x)1f(x)][1+f(x)]=f(x),故 T = 2 a T=2a T=2a

② 已知 f ( x + a ) = 1 + f ( x ) 1 − f ( x ) f(x+a)=\cfrac{1+f(x)}{1-f(x)} f(x+a)=1f(x)1+f(x),则周期为 T = 4 a T=4a T=4a;[其实若能赋值验证,比下面的推导更简单]

[推导过程]:由于 f ( x + a ) = 1 + f ( x ) 1 − f ( x ) f(x+a)=\cfrac{1+f(x)}{1-f(x)} f(x+a)=1f(x)1+f(x)

f ( x + 2 a ) = f [ ( x + a ) + a ] = 1 + f ( x + a ) 1 − f ( x + a ) = 1 + 1 + f ( x ) 1 − f ( x ) 1 − 1 + f ( x ) 1 − f ( x ) f(x+2a)=f[(x+a)+a]=\cfrac{1+f(x+a)}{1-f(x+a)}=\cfrac{1+\frac{1+f(x)}{1-f(x)}}{1-\frac{1+f(x)}{1-f(x)}} f(x+2a)=f[(x+a)+a]=1f(x+a)1+f(x+a)=11f(x)1+f(x)1+1f(x)1+f(x)

= [ 1 + 1 + f ( x ) 1 − f ( x ) ] [ 1 − f ( x ) ] [ 1 − 1 + f ( x ) 1 − f ( x ) ] [ 1 − f ( x ) ] = 2 − 2 f ( x ) = − 1 f ( x ) =\cfrac{[1+\frac{1+f(x)}{1-f(x)}][1-f(x)]}{[1-\frac{1+f(x)}{1-f(x)}][1-f(x)]}=\cfrac{2}{-2f(x)}=-\cfrac{1}{f(x)} =[11f(x)1+f(x)][1f(x)][1+1f(x)1+f(x)][1f(x)]=2f(x)2=f(x)1

f ( x + 4 a ) = f [ ( x + 2 a ) + 2 a ] = − 1 f ( x + 2 a ) = − 1 − 1 f ( x ) = f ( x ) f(x+4a)=f[(x+2a)+2a]=-\cfrac{1}{f(x+2a)}=-\cfrac{1}{-\frac{1}{f(x)}}=f(x) f(x+4a)=f[(x+2a)+2a]=f(x+2a)1=f(x)11=f(x),故 T = 4 a T=4a T=4a

③ 已知 f ( x + a ) = − 1 − f ( x ) 1 + f ( x ) f(x+a)=-\cfrac{1-f(x)}{1+f(x)} f(x+a)=1+f(x)1f(x),则周期为 T = 4 a T=4a T=4a

提示:仿上自己证明;


  1. 如果 ⋯ \cdots ,那么 ⋯ \cdots 句式,说明不是所有的函数都满足 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x),即有些函数不是周期函数,比如指数函数 f ( x ) = 2 x f(x)=2^x f(x)=2x↩︎

  2. 【常见结论1推导过程】:
    由题目可知, f ( x + a ) = − f ( x ) f(x+a)=-f(x) f(x+a)=f(x),则 f ( x + 2 a ) = f [ ( x + a ) + a ] f(x+2a)=f[(x+a)+a] f(x+2a)=f[(x+a)+a]
    = 整体代换 用 x + a 代换已知式中的 x − f ( x + a ) = 代换 用已知 f ( x + a ) = − f ( x ) − [ − f ( x ) ] = f ( x ) \xlongequal[整体代换]{用x+a代换已知式中的x}-f(x+a)\xlongequal[代换]{用已知f(x+a)=-f(x)}-[-f(x)]=f(x) x+a代换已知式中的x 整体代换f(x+a)用已知f(x+a)=f(x) 代换[f(x)]=f(x)
    从而, ⟹ T = 2 a \Longrightarrow T=2a T=2a↩︎

  3. 【常见结论1的引申推导】:
    f ( x + 2 a ) = f [ ( x + a ) + a ] = b − f ( x + a ) = b − [ b − f ( x ) ] = f ( x ) ⟹ T = 2 a f(x+2a)=f[(x+a)+a]=b-f(x+a)=b-[b-f(x)]=f(x)\Longrightarrow T=2a f(x+2a)=f[(x+a)+a]=bf(x+a)=b[bf(x)]=f(x)T=2a
    具体例子, f ( x ) + f ( x + 4 ) = 16 f(x)+f(x+4)=16 f(x)+f(x+4)=16,周期 T = 8 T=8 T=8↩︎

  4. 【常见结论2推导过程】:
    f ( x + 2 a ) = f [ ( x + a ) + a ] = k f ( x + a ) = k k f ( x ) = f ( x ) f(x+2a)=f[(x+a)+a]=\cfrac{k}{f(x+a)}=\cfrac{k}{\cfrac{k}{f(x)}}= f(x) f(x+2a)=f[(x+a)+a]=f(x+a)k=f(x)kk=f(x)
    从而, ⟹ T = 2 a \Longrightarrow T=2a T=2a ↩︎

  5. 【三个连续自变量的形式推导过程】
    由已知 f ( x + 2 ) = f ( x + 1 ) − f ( x ) ① f(x+2)=f(x+1)-f(x)① f(x+2)=f(x+1)f(x)
    x − 1 x-1 x1代换 x x x,得到由此得到 f ( x + 1 ) = f ( x ) − f ( x − 1 ) ② f(x+1)=f(x)-f(x-1)② f(x+1)=f(x)f(x1)
    ①②两式相加得到 f ( x + 2 ) = − f ( x − 1 ) f(x+2)=-f(x-1) f(x+2)=f(x1)
    f ( x + 3 ) = − f ( x ) f(x+3)=-f(x) f(x+3)=f(x),故周期为 T = 6 T=6 T=6↩︎

  6. 分析:则由KaTeX parse error: {align*} can be used only in display mode.
    ⟹ f ( 2 − x ) = − f ( − x ) ⟹ f ( 2 + x ) = − f ( x ) ⟹ \Longrightarrow f(2-x)=-f(-x)\Longrightarrow f(2+x)=- f(x)\Longrightarrow f(2x)=f(x)f(2+x)=f(x)周期 T = 4 T=4 T=4 ↩︎

  7. 分析:由函数 f ( x ) f(x) f(x)的图像关于点 ( 3 , 0 ) (3,0) (3,0)对称,即有 f ( x ) + f ( 6 − x ) = 0 f(x)+f(6-x)=0 f(x)+f(6x)=0
    则由KaTeX parse error: {align*} can be used only in display mode. ⟹ f ( 2 − x ) = − f ( 6 − x ) \Longrightarrow f(2-x)=-f(6-x) f(2x)=f(6x)
    ⟹ f ( 2 − x ) = − f [ 4 + ( 2 − x ) ] ⟹ f ( x ) = − f ( 4 + x ) ⟹ \Longrightarrow f(2-x)=-f[4+(2-x)]\Longrightarrow f(x)=-f(4+x)\Longrightarrow f(2x)=f[4+(2x)]f(x)=f(4+x)周期 T = 8 T=8 T=8 ↩︎

  8. 分析:由于 f ( x ) + f ( x + 1 ) + f ( x + 2 ) f(x)+f(x+1)+f(x+2) f(x)+f(x+1)+f(x+2)为定值 a a a,则 f ( x ) + f ( x + 1 ) + f ( x + 2 ) = a f(x)+f(x+1)+f(x+2)=a f(x)+f(x+1)+f(x+2)=a
    f ( x + 1 ) + f ( x + 2 ) + f ( x + 3 ) = a f(x+1)+f(x+2)+f(x+3)=a f(x+1)+f(x+2)+f(x+3)=a,即 f ( x ) + f ( x + 1 ) + f ( x + 2 ) = f ( x + 1 ) + f ( x + 2 ) + f ( x + 3 ) f(x)+f(x+1)+f(x+2)=f(x+1)+f(x+2)+f(x+3) f(x)+f(x+1)+f(x+2)=f(x+1)+f(x+2)+f(x+3)
    f ( x + 3 ) = f ( x ) f(x+3)=f(x) f(x+3)=f(x),故函数的周期 T = 3 T=3 T=3↩︎

  9. 提示:用到赋值法,令 x = − 3 x=-3 x=3,则有 f ( − 3 + 6 ) = f ( − 3 ) + f ( 3 ) f(-3+6)=f(-3)+f(3) f(3+6)=f(3)+f(3),再由奇偶性推出 f ( 3 ) = 0 f(3)=0 f(3)=0,从而 f ( x + 6 ) = f ( x ) f(x+6)=f(x) f(x+6)=f(x),故 T = 6 T=6 T=6
    引申: f ( x + 6 ) = f ( x ) + n ⋅ f ( 3 ) ( n ∈ N ∗ ) f(x+6)=f(x)+n\cdot f(3)(n\in N^*) f(x+6)=f(x)+nf(3)(nN),且 f ( x ) f(x) f(x)为偶函数, ⟹ T = 6 \Longrightarrow T=6 T=6(赋值法)
    同理, f ( x + 4 ) = f ( x ) + f ( 2 ) f(x+4)=f(x)+f(2) f(x+4)=f(x)+f(2)可以推出周期 T = 4 T=4 T=4↩︎

  10. 分析:令 x = y = 0 x=y=0 x=y=0,则有 2 f ( 0 ) = 2 f 2 ( 0 ) 2f(0)=2f^2(0) 2f(0)=2f2(0),得到 f ( 0 ) = 0 或 f ( 0 ) = 1 f(0)=0或f(0)=1 f(0)=0f(0)=1
    再令 x = 1 , y = 0 x=1,y=0 x=1y=0,则有 2 f ( 1 ) = 2 f ( 1 ) f ( 0 ) 2f(1)=2f(1)f(0) 2f(1)=2f(1)f(0),得到 f ( 0 ) = 1 f(0)=1 f(0)=1
    又题目已知 f ( 1 ) = 1 2 f(1)=\cfrac{1}{2} f(1)=21,令 y = 1 y=1 y=1,则有 f ( x + 1 ) + f ( x − 1 ) = 2 f ( x ) f ( 1 ) = f ( x ) f(x+1)+f(x-1)=2f(x)f(1)=f(x) f(x+1)+f(x1)=2f(x)f(1)=f(x)
    即就是 f ( x + 1 ) + f ( x − 1 ) = f ( x ) ① f(x+1)+f(x-1)=f(x)① f(x+1)+f(x1)=f(x),由此得到 f ( x + 2 ) + f ( x ) = f ( x + 1 ) ② f(x+2)+f(x)=f(x+1)② f(x+2)+f(x)=f(x+1)
    ①②两式相加得到 f ( x + 2 ) = − f ( x − 1 ) f(x+2)=-f(x-1) f(x+2)=f(x1),即 f ( x + 3 ) = − f ( x ) f(x+3)=-f(x) f(x+3)=f(x),故周期为 T = 6 T=6 T=6↩︎

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值