前言
当你学习了本篇博文后,如果感觉还需要深入学习,可以阅读函数的奇偶性周期性习题;
周期概念
(1). 周期函数:对于函数 y = f ( x ) y=f(x) y=f(x),如果存在一个非零常数 T T T,使得当 x x x 取定义域内的任何值时,都有 f ( x + T ) f(x+T) f(x+T) = = = f ( x ) f(x) f(x),那么1就称函数 y = f ( x ) y=f(x) y=f(x) 为周期函数,称 T T T 为这个函数的周期。
比如,函数 y = f ( x ) = sin x y=f(x)=\sin x y=f(x)=sinx,由于 x ∈ R x\in R x∈R,则 x + 4 π ∈ R x+4\pi\in R x+4π∈R,且对任意 x x x 都满足 sin ( x + 4 π ) = sin x \sin(x+4\pi)=\sin x sin(x+4π)=sinx,故 函数 y y y = = = f ( x ) f(x) f(x) = = = sin \sin sin x x x是周期函数, 4 π 4\pi 4π 为它的一个周期。
(2). 最小正周期:如果在周期函数 f ( x ) f(x) f(x) 的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f ( x ) f(x) f(x) 的最小正周期。
理解概念中的关键词,知道有些函数如 f ( x ) f(x) f(x) = = = 2 x 2^x 2x 不是周期函数,有些函数仅有正周期如 f ( x ) f(x) f(x) = = = s i n x sinx sinx, x ∈ [ 0 , + ∞ ) x\in[0,+\infty) x∈[0,+∞) 或者仅有负周期;
常函数 f ( x ) f(x) f(x) = = = c c c( c c c为常数) 没有最小正周期,如 f ( x ) = c f(x)=c f(x)=c ,则 f ( x + T ) f(x+T) f(x+T) = = = c c c ,此时的 T T T 没有最小的正数。
函数的周期性从数上理解,是说函数的自变量 x x x 增加 T T T 后,函数值重复出现;从形上理解,是说函数的图象左右平移 T T T 后,函数的图象和原图象重合。
常见方式
- 以图像的形式给出;
解读图像,从图像中我们就可以找出周期 T T T。
- 以周期的定义式给出;
常见定义式: f ( x + 4 ) = f ( x ) ⟹ T = 4 f(x+4)=f(x)\Longrightarrow T=4 f(x+4)=f(x)⟹T=4
定义式的常见变形: f ( x + 2 ) = f ( x − 2 ) f(x+2)=f(x-2) f(x+2)=f(x−2)或者 f ( x + 3 ) = f ( x − 1 ) ⟹ T = 4 f(x+3)=f(x-1) \Longrightarrow T=4 f(x+3)=f(x−1)⟹T=4
函数 f ( x + 1 ) f(x+1) f(x+1) 是周期为 2 2 2 的周期函数,故 f ( x ) f(x) f(x) 也是周期为 2 2 2 的周期函数,又或函数 f ( x ) f(x) f(x) 是周期为 2 2 2 的周期函数,则 f ( x + 1 ) f(x+1) f(x+1) 也是周期为 2 2 2 的周期函数,
- 以周期性的结论给出(不妨设 a > 0 a>0 a>0);
结论1: f ( x + a ) = − f ( x ) f(x+a)=-f(x) f(x+a)=−f(x)或者变形 f ( x + a ) + f ( x ) = 0 ⟹ T = 2 a f(x+a)+f(x)=0\Longrightarrow T=2a f(x+a)+f(x)=0⟹T=2a;推导:2
引申1: f ( x + a ) = b − f ( x ) f(x+a)=b-f(x) f(x+a)=b−f(x)或者变形 f ( x + a ) + f ( x ) = b ⟹ T = 2 a f(x+a)+f(x)=b\Longrightarrow T=2a f(x+a)+f(x)=b⟹T=2a;推导:3
结论2: f ( x + a ) = k f ( x ) ( k ≠ 0 ) f(x+a)=\cfrac{k}{f(x)}(k\neq 0) f(x+a)=f(x)k(k=0)或者变形 f ( x + a ) ⋅ f ( x ) = k ⟹ T = 2 a f(x+a)\cdot f(x)=k \Longrightarrow T=2a f(x+a)⋅f(x)=k⟹T=2a;推导:4
- 以三个连续自变量的形式给出
给出表达式: f ( x + 2 ) = f ( x + 1 ) − f ( x ) ⟹ f ( x + 3 ) = − f ( x ) ⟹ T = 6 f(x+2)=f(x+1)-f(x)\Longrightarrow f(x+3)=-f(x)\Longrightarrow T=6 f(x+2)=f(x+1)−f(x)⟹f(x+3)=−f(x)⟹T=6;推导:5
- 以奇偶性和对称性结合形式给出周期性;
引例,已知函数 f ( x ) f(x) f(x)是奇函数,且满足 f ( 2 − x ) = f ( x ) f(2-x)=f(x) f(2−x)=f(x),则可知函数的周期 T = 4 T=4 T=4;推导:6
- 以轴对称和中心对称结合形式给出周期性;
引例,已知函数 f ( x ) f(x) f(x)的图像关于点 ( 3 , 0 ) (3,0) (3,0)对称,且满足 f ( 2 − x ) = f ( x ) f(2-x)=f(x) f(2−x)=f(x),则可知函数的周期 T = 8 T=8 T=8;推导:7
- 以和为定值的方式给出;
引例,函数 f ( x ) f(x) f(x) 满足 f ( x ) + f ( x + 1 ) + f ( x + 2 ) f(x)+f(x+1)+f(x+2) f(x)+f(x+1)+f(x+2)为定值 a a a,则函数 f ( x ) f(x) f(x) 为周期函数;8
其他方式
- 分段函数的部分周期性
如已知 f ( x ) f(x) f(x)的定义域为 R R R,且 f ( x ) = { 2 − x − 1 , x ≤ 0 f ( x − 1 ) , x > 0 f(x)=\begin{cases}2^{-x}-1,&x\leq 0 \\f(x-1),&x>0\end{cases} f(x)={ 2−x−1,f(x−1),x≤0x>0,
则函数在 x < 0 x<0 x<0上没有周期性,但是在 x > 0 x>0 x>0上有周期性,周期是 T = 1 T=1 T=1,
- 以赋值法的模式给出
比如表达式: f ( x + 6 ) = f ( x ) + f