求cos x的微分(无穷级数做为工具)

求cos x的微分(无穷级数做为工具)

cos (x+small_x)-cos  x

Go

1/2*{ e^ i (x+small_x) + e^ -i (x+small_x) }  -  1/2*{ e^ i (x) + e^ -i (x) }

Go

1/2*{ e^(ix)* (e^i*small_x-1) +  e^(-ix)* (e^-i*small_x-1)

Go

分别对e^i*small_x和e^-i*small_x进行欧拉级数展开有:

e^i*small_x=1+i*small_x/1!+(i*small_x)^2/2!...

e^-i*small_x=1+-i*small_x/1!+(-i*small_x)^2/2!...

Go

1/2*{ e^(ix)* (i*small_x) +  e^(-ix)* (-i*small_x) }

Go

提取small_x得到:

1/2*{i* e^(ix)  - i* e^(-ix)}

G0

=-sin  x 得到证明。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值