求cos x的微分(无穷级数做为工具)
cos (x+small_x)-cos x
Go
1/2*{ e^ i (x+small_x) + e^ -i (x+small_x) } - 1/2*{ e^ i (x) + e^ -i (x) }
Go
1/2*{ e^(ix)* (e^i*small_x-1) + e^(-ix)* (e^-i*small_x-1)
Go
分别对e^i*small_x和e^-i*small_x进行欧拉级数展开有:
e^i*small_x=1+i*small_x/1!+(i*small_x)^2/2!...
e^-i*small_x=1+-i*small_x/1!+(-i*small_x)^2/2!...
Go
1/2*{ e^(ix)* (i*small_x) + e^(-ix)* (-i*small_x) }
Go
提取small_x得到:
1/2*{i* e^(ix) - i* e^(-ix)}
G0
=-sin x 得到证明。