(已更新)
大家一定听过麦克劳林级数吧,其实就是x=0处的泰勒展开式,我们知道,要想两只曲线重合得越多,就要使它们的n阶导数越接近,于是我们就可以利用这一个点,近似求这点附近的所有点了,那么泰勒展开式怎么求呢?
我们以sinx为例,令它的麦克劳林级数是f(x),则它的麦克劳林级数f(x)=x-(x^3)/6+(x^5)/120+……+[(-1)^(n+1)]*[x^(2n-1)]/(2n-1)!
接下来我们要验证这两个函数图象在x=0附近近似重合,只需验证这两条曲线的导数在x=0处的极限,也就是任意阶导数在x=0处的极限相等,
lim sinx=limf(x)=0,
lim cosx=limf'(x)=1
lim (-sinx)=limf''(x)=0
lim(-cosx)=limf'''(x)=-1
……
这样,在X=0附近的所有点,都能用麦克劳林级数表示
接下来看看cosx在x=π处的泰勒级数f(x),我们知道cosπ=-1,于是我们要使

我们要将其表示成-1+ax+bx^2+cx^3+…的形式,但是当x→π的时候其值为-1+aπ^2+cπ^3+…极限并不是-1,于是,为了让其等于-1,我们只能将其表示成(x-π)的形式,这样x=π时不就约去了吗,这样使各导数在x→π的极限相等,就可以等于导数在x=π时的值相等,这样就可以利用这个相等的值,求它的原函数(一导对一项原则,例如二阶导数是2,则它的二次原函数也应选只有一项的那个原函数,即2对应(x-x₀)^2而不是(x-x₀)^2+C,否则就多了一项了),再将这些函数相加,不就是泰勤展开式吗,例如二阶导数-cosπ=1,即f''(π)=1,即f''(π)一项为1,其余各项(x-π)项是0,将这个函数求两次原函数,不就是这一项的值吗?令z=(x-π),则这一项就是(z^2)/2,再用x-π表示,这一项不就出来了吗?
其余各项都是这样算的。
泰勒级数适用条件:该函数是解析函数且可无限求导。
接下来就是等价无穷小,它其实就是泰勒展开式中最小的一项,我们在求x=0处的等价无穷小时,有个前提就是必须能过点(0,0),不过点(0,0)怎么办呢,就是想办法让它过(0,0),例如sin(1/x)我们可以令z=1/x,令其等于sinz,而sin0=0,它不就过(0,0)了吗。像sin(1/x)无泰勒级数(在x=0不解析)但它却有等价无穷小,类似的还有很多,我们不能求它们的泰勒级数,只能求它们的洛朗级数。
泰勒级数还有一个重要意义,它联系了指数函数与三角函数,得出了著名的欧拉公式,有兴趣的同学可以试试推导一下噢,切记用上i^2=-1,可以用它替换i^2项噢,公式如下:

上式中令x=π,得到如下公式

即e^(iπ)+1=0,这个公式也称欧拉公式,它联系了数学中的“五朵金花”,即0,1,i,π,e这五朵金花,这个公式在数学界是个十分重要的公式,它将复数扩充到了指数函数的领域