使用 C# 开发机器视觉相关的软件应用是一个非常强大的选择,特别是在需要与工业应用、Windows 系统集成,或者与 .NET 生态系统结合的场景中。C# 提供了丰富的工具链、库和框架支持,包括开源的计算机视觉库(如 OpenCvSharp)、商业组件(如 Emgu.CV、HALCON)、以及 .NET 自带的一些功能,如多线程、异步编程和硬件接口支持。
以下是一个完整的指南,帮助你从零开始使用 C# 进行机器视觉相关的应用研发:
1. 机器视觉应用的基本组成
机器视觉应用通常由以下几部分组成:
- 图像采集:
- 通过工业相机(如 Basler、FLIR、IDS)或普通摄像头获取原始图像。
- 图像处理:
- 对图像进行预处理(如去噪、灰度化、增强)和特征提取。
- 计算机视觉算法:
- 实现核心逻辑,如目标检测、物体识别、边缘检测等。
- 结果输出:
- 将处理结果显示到用户界面,或者输出到文件、数据库或其他系统。
- 硬件控制:
- 结合工业设备(如 PLC、机械臂)实现自动化控制。
2. C# 中使用的主要工具和库
2.1 开源库
2.1.1 OpenCvSharp
- OpenCvSharp 是 OpenCV 在 C# 中的封装,支持大多数 OpenCV 功能,适合处理图像和视频。
- 功能包括图像处理、特征点检测、模板匹配、深度学习推理等。
安装:
通过 NuGet 安装:
Install-Package OpenCvSharp4
Install-Package OpenCvSharp4.runtime.win
示例代码:Canny 边缘检测
using OpenCvSharp;
class Program
{
static void Main(string[] args)
{
// 读取图像
Mat image = Cv2.ImRead("sample.jpg", ImreadModes.Color);
// 转灰度图
Mat grayImage = new Mat();
Cv2.CvtColor(image, grayImage, ColorConversionCodes.BGR2GRAY);
// 边缘检测
Mat edges = new Mat();
Cv2.Canny(grayImage, edges, 100, 200);
// 显示结果
Cv2.ImShow("Edges", edges);
Cv2.WaitKey();
}
}
2.1.2 Emgu.CV
- Emgu.CV 是另一个 C# 版本的 OpenCV 封装,功能类似 OpenCvSharp,但更偏向商业应用。
- 支持 GPU 加速、深度学习推理(如 YOLO、ResNet)。
安装:
通过 NuGet 安装:
Install-Package Emgu.CV
Install-Package Emgu.CV.runtime.windows
2.2 商业库
2.2.1 HALCON
- HALCON 是工业级的机器视觉库,提供了强大的图像处理和模式识别功能,广泛应用于工业检测。
- 支持直接集成 C#,但需要购买许可。
2.2.2 Basler Pylon SDK
- 用于控制 Basler 工业相机,支持高帧率图像采集。
- 提供 C# API,可以轻松与工业相机交互。
2.3 硬件接口库
2.3.1 Camera SDK
- 常见工业相机(如 Basler、FLIR)的官方 SDK,支持通过 C# 控制相机。
- 示例:Basler Pylon 和 FLIR Spinnaker。
2.3.2 SerialPort
- 用于与硬件设备进行串口通信,例如控制机械臂或 PLC。
示例代码:串口通信
using System.IO.Ports;
class SerialPortExample
{
static void Main()
{
SerialPort port = new SerialPort("COM3", 9600);
port.Open();
// 发送数据
port.WriteLine("Hello, Hardware!");
// 接收数据
string data = port.ReadLine();
Console.WriteLine($"Received: {dat