论文分享——Hybrid E-learning Recommendation Approach

本文提出了一个基于用户影响力的混合在线学习推荐方法。通过建立学习者影响模型(LIM),结合直觉模糊逻辑(IFL)优化和自组织推荐(SOB)传播用户信息,解决数据稀疏问题。最终使用序列模式挖掘(SPM)进行个性化推荐。
摘要由CSDN通过智能技术生成

文章目录

概述

论文题目为《Hybrid E-learning Recommendation Approach Based on Learners’ Influence Propagation》,跟之前分享的这篇文章来自同一作者,本文发表时间较晚,为后续工作。

同样这篇文章讲的是在线学习的推荐系统,主要 novelty 我认为是在用户间的信息传递上。方法大致为:
(1)先对每个用户建模(Learner Influence Model,LIM),根据问卷调查确定用户的学习风格和习惯(personality),以及根据他的学习情况建立起 learning profile (学习历史),除此之外还有每个用户的水平(knowledge credibility)和值得信任的程度(learner aggregation),前者是通过学习记录计算出,后者则是通过评估用户的影响力(follower的数量、质量)得出
(2)利用 intuitionistic fuzzy logic (IFL) 模型优化 LIM。这个方法增加了模型的多样性和可扩展性,因为它在每个用户信息中增加了一些不确定的和 intuition 的部分
(3)提出 self-organization based (SOB) recommendation approach,这一部分和作者之前那篇文章很类似&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值