二维离散傅里叶变换的权值矩阵计算

数学 专栏收录该内容
3 篇文章 0 订阅

例题

计算以下图像的离散傅里叶变换
f = [ 1 4 4 1 2 4 4 2 2 4 4 2 1 4 4 1 ] f=\begin{bmatrix}1&4&4&1\\2&4&4&2\\2&4&4&2\\1&4&4&1\end{bmatrix} f=1221444444441221

计算方式当然不是通过原始公式硬算,而是构造权值矩阵来计算。

考虑二维DFT的分解:
F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x / M + v y / N ) = ∑ x = 0 M − 1 e − j 2 π u x / M ∑ y = 0 N − 1 f ( x , y ) e − j 2 π v y / N = ∑ x = 0 M − 1 e − j 2 π u x / M F ( x , v ) F(u,v)=\sum^{M-1}_{x=0}\sum^{N-1}_{y=0}f(x,y)e^{-j2\pi (ux/M+vy/N)}\\=\sum^{M-1}_{x=0}e^{-j2\pi ux/M}\sum^{N-1}_{y=0}f(x,y)e^{-j2\pi vy/N}\\=\sum^{M-1}_{x=0}e^{-j2\pi ux/M}F(x,v) F(u,v)=x=0M1y=0N1f(x,y)ej2π(ux/M+vy/N)=x=0M1ej2πux/My=0N1f(x,y)ej2πvy/N=x=0M1ej2πux/MF(x,v)
注意到,对每一个 x x x,都有:
F ( x , v ) = ∑ y = 0 N − 1 f ( x , y ) e − j 2 π v y / N F(x,v)=\sum^{N-1}_{y=0}f(x,y)e^{-j2\pi vy/N} F(x,v)=y=0N1f(x,y)ej2πvy/N
因此,当 N = 4 N=4 N=4时:
F ( x , 0 ) = ∑ y = 0 N − 1 f ( x , y ) F ( x , 1 ) = ∑ y = 0 N − 1 f ( x , y ) e − j π y / 2 F ( x , 2 ) = ∑ y = 0 N − 1 f ( x , y ) e − j π y F ( x , 3 ) = ∑ y = 0 N − 1 f ( x , y ) e − j 3 π y / 2 F(x,0)=\sum^{N-1}_{y=0}f(x,y)\\F(x,1)=\sum^{N-1}_{y=0}f(x,y)e^{-j\pi y/2}\\F(x,2)=\sum^{N-1}_{y=0}f(x,y)e^{-j\pi y}\\F(x,3)=\sum^{N-1}_{y=0}f(x,y)e^{-j3\pi y/2} F(x,0)=y=0N1f(x,y)F(x,1)=y=0N1f(x,y)ejπy/2F(x,2)=y=0N1f(x,y)ejπyF(x,3)=y=0N1f(x,y)ej3πy/2
固定 x x x时,每个 F ( x , v ) F(x,v) F(x,v)可视为 f ( x , y ) f(x,y) f(x,y)这个行向量与相应的权值向量(列向量)的内积,如 F ( x , 1 ) F(x,1) F(x,1)的公式中对应的权值向量就是 [ 1 − j − 1 j ] \begin{bmatrix}1&-j&-1&j\end{bmatrix} [1j1j]

因此构造权值矩阵 A y A_y Ay
A y = [ 1 1 1 1 1 − j − 1 j 1 − 1 1 − 1 1 j − 1 − j ] A_y=\begin{bmatrix}1&1&1&1\\1&-j&-1&j\\1&-1&1&-1\\1&j&-1&-j\end{bmatrix} Ay=11111j1j11111j1j

同理可构造权值矩阵 A x = A y A_x=A_y Ax=Ay,因此傅里叶变换为:
F = A x f A y = [ 1 1 1 1 1 − j − 1 j 1 − 1 1 − 1 1 j − 1 − j ] [ 1 4 4 1 2 4 4 2 2 4 4 2 1 4 4 1 ] [ 1 1 1 1 1 − j − 1 j 1 − 1 1 − 1 1 j − 1 − j ] = [ 44 − 10 − 10 j 0 − 10 + 10 j − 2 − 2 j − 2 j 0 − 2 0 0 0 0 − 2 + 2 j − 2 0 2 j ] F=A_xfA_y=\begin{bmatrix}1&1&1&1\\1&-j&-1&j\\1&-1&1&-1\\1&j&-1&-j\end{bmatrix}\begin{bmatrix}1&4&4&1\\2&4&4&2\\2&4&4&2\\1&4&4&1\end{bmatrix}\begin{bmatrix}1&1&1&1\\1&-j&-1&j\\1&-1&1&-1\\1&j&-1&-j\end{bmatrix}\\=\begin{bmatrix}44&-10-10j&0&-10+10j\\-2-2j&-2j&0&-2\\0&0&0&0\\-2+2j&-2&0&2j\end{bmatrix} F=AxfAy=11111j1j11111j1j122144444444122111111j1j11111j1j=4422j02+2j1010j2j02000010+10j202j
注意这两个权值矩阵对所有4x4的图像都适用,可通过matlab fft2函数检验

傅里叶反变换的权值矩阵为:
1 16 ∗ [ 1 1 1 1 1 j − 1 − j 1 − 1 1 − 1 1 − j − 1 j ] \frac{1}{16}*\begin{bmatrix}1&1&1&1\\1&j&-1&-j\\1&-1&1&-1\\1&-j&-1&j\end{bmatrix} 16111111j1j11111j1j

类似地,构造3x3图像的权值矩阵:
A x = A y = [ 1 1 1 1 − 1 / 2 − 3 / 2 j − 1 / 2 + 3 / 2 j 1 − 1 / 2 + 3 / 2 j − 1 / 2 − 3 / 2 j ] A_x=A_y=\begin{bmatrix}1&1&1\\1&-1/2-\sqrt{3}/2j&-1/2+\sqrt{3}/2j\\1&-1/2+\sqrt{3}/2j&-1/2-\sqrt{3}/2j\end{bmatrix} Ax=Ay=11111/23 /2j1/2+3 /2j11/2+3 /2j1/23 /2j

  • 7
    点赞
  • 1
    评论
  • 13
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值