二维离散傅里叶变换最详手算

前置知识

1. 1 复数

​ 定义(符号表示):

​ a + bi (这里a,b是实数,i是虚数单位,a叫做复数的实部,b叫做复数的虚部。可以认为实数a等价于复数a+0i)

​ 几何(复平面):

​ 水平的实轴与垂直的虚轴建立起来的复数的几何表示

在这里插入图片描述

​ 其他理解:

 对于方程 x^2 = 1*x*x = -1   
 我们可以把*x看作是一种变换,经过两次变换,1变成了-1 
 如果我们把这种变换看成是“逆时针旋转90%”,就能够实现1变为-1
 也就是说我们可以把 *i 看作是逆时针旋转90%

​ 如图

在这里插入图片描述

​ 复平面上一个点乘以(-1+7i)的几何意义:

​ 模长增加\srqt(50),方向逆时针旋转arctan(7/-1) = 98.17°

两个复数相乘的结果就是:让它们的模长相乘得到最终的模长,让它们的幅角相加得到最终的幅角

参考文章:https://zhuanlan.zhihu.com/p/48392273

1.2 e的美妙

​ e = 2.718281828459…

​ 指数增长模型

​ 假设你有1元钱存在银行里,银行的利率为100%,若银行一年付一次利息,一年后你可以拿到1元本金+1元利息共两元

​ 假设银行利率不变但利息改为半年一付,那么在半年时候把0.5的利息再次存入银行(复利),一年后能拿到1元本金+1+0.25共2.25元

​ 假设利率还是不是但利息改为四月一付,拿到利息后进行复利,那么一年后能拿到2.37元

在这里插入图片描述

​ 计算公式 // r为增长率,x为增长周期,Q为初始值的Q倍
Q = ( 1 + r ) x Q = (1+r)^x Q=(1+r)x
​ 复利模型

​ 假设利息连续不断的付,进行连续复利,那么利润的这个天花板就是e!如下图

在这里插入图片描述

​ 高等数学的重要极限
e = lim ⁡ n → ∞ ( 1 + 1 n ) n e = \lim_{n \rightarrow ∞}(1+\frac{1}{n})^n e=nlim(1+n1)n
​ 参考文章:https://zhuanlan.zhihu.com/p/48391055

1. 2 欧拉公式

​ 定义:

e i x = cos ⁡ x + i sin ⁡ x e^{ix} = \cos x + i \sin x eix=cosx+isinx

​ 欧拉恒等式x=Π:
e i π = − 1 , e i π + 1 = 0 e^{i\pi} = -1 ,\quad e^{i\pi}+1 =0 eiπ=1,eiπ+1=0

​ 推导:

​ 采用复数cos(x)+i*sin(x)可以描述单位圆周上的点的位置或运动轨迹

在这里插入图片描述

​ 自然底数e的定义式
e = lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ( 1 + 100 % n ) n e = \lim_{n \rightarrow ∞}{(1 + \frac{1}{n})^n}=\lim_{n \rightarrow ∞}{(1 + \frac{100\%}{n})^n} e=nlim(1+n1)n=nlim(1+n100%)n
​ 当增长率为虚数时候
e i = lim ⁡ n → ∞ ( 1 + 100 % ∗ i n ) n = 1 ∗ lim ⁡ n → ∞ ( 1 + 100 % ∗ i n ) n e^i = \lim_{n \rightarrow ∞}{(1 + \frac{100\%*i}{n})^n} = 1*\lim_{n \rightarrow ∞}{(1 + \frac{100\%*i}{n})^n} ei=nlim(1+n100%i)n=1nlim(1+n100%i)n
​ 我们可以把上式拆分,看作是1进行了n次的变换,每一次的变换的模长增量都是1,角度增量都是1/n。

在这里插入图片描述

​ 每一次的旋转如图

image-20210622230247938

即最终转动的弧度为1。由此可得


e i = 1 ∗ lim ⁡ n → ∞ ( 1 + 100 % ∗ i n ) n = cos ⁡ 1 + i ∗ sin ⁡ 1 e^i = 1*\lim_{n \rightarrow ∞}{(1 + \frac{100\%*i}{n})^n} = \cos 1 + i*\sin 1 ei=1nlim(1+n100%i)n=cos1+isin1
​ 更一般地对于e^(ix)

在这里插入图片描述

​ 即最终旋转的弧度为x。由此可得


e i x = 1 ∗ lim ⁡ n → ∞ ( 1 + 100 % ∗ i x n ) n = cos ⁡ x + i ∗ sin ⁡ x e^{ix} = 1*\lim_{n \rightarrow ∞}{(1 + \frac{100\%*ix}{n})^n} = \cos x + i*\sin x eix=1nlim(1+n100%ix)n=cosx+isinx
​ 证毕。

​ 其他等式
sin ⁡ x = e i x − e − i x 2 i cos ⁡ x = e i x + e − i x 2 \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \cos x = \frac{e^{ix}+e^{-ix}}{2} sinx=2ieixeixcosx=2eix+eix
参考文章:https://zhuanlan.zhihu.com/p/48392958

一 定义

在这里插入图片描述

二 例题

2.1 定义展开法

​ 题目
f ( x , y ) = cos ⁡ ( π 4 x ) , x = [ 0 , 511 ] , 计 算 其 二 维 离 散 傅 里 叶 变 换 F ( u , v ) f(x,y) = \cos (\frac{\pi}{4}x),x=[0,511],计算其二维离散傅里叶变换F(u,v) f(x,y)=cos(4πx),x=[0,511],F(u,v)
​ 解:
根 据 欧 拉 公 式 有 f = e i π 4 x + e − i π 4 x 2 , 设 M = N = 512 F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u m x + v N y ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( e j π 4 x + e − j π 4 x ) ∗ e − j 2 π ( u m x + v N y ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( e j ( π 4 x − 2 π u M x − 2 π v N y ) + e − j ( π 4 x + 2 π u M x + 2 π v N y ) ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( e j 2 π 512 [ ( 64 − u ) x − v y ] + e − j 2 π 512 [ ( 64 + u ) x + v y ] ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( cos ⁡ 2 π 512 [ ( 64 − u ) x − v y ] + j sin ⁡ π v 512 [ ( 64 + u ) x + v y ] + cos ⁡ 2 π 512 [ ( 64 + u ) x + v y ] + − ( j ) sin ⁡ π v 512 [ ( 64 + u ) x + v y ] ) = 1 2 M N δ ( u − 64 , v − 0 ) + 1 2 M N δ ( u + 64 , v − 0 ) \begin{aligned} &根据欧拉公式有f = \frac{e^{i\frac{\pi}{4}x}+e^{-i\frac{\pi}{4}x}}{2} ,设M=N=512\\ & F(u,v) = \sum^{M-1}_{x=0} \sum^{N-1}_{y=0}f(x,y)e^{-j2\pi(\frac{u}{m}x+\frac{v}{N}y)} \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}(e^{j\frac{\pi}{4}x}+e^{-j\frac{\pi}{4}x}) *e^{-j2\pi(\frac{u}{m}x+\frac{v}{N}y)}\\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\bigg (e^{j(\frac{\pi}{4}x-\frac{2\pi u}{M}x-\frac{2\pi v }{N}y)}+ e^{-j(\frac{\pi}{4}x+\frac{2\pi u}{M}x+\frac{2\pi v }{N}y)} \bigg) \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\bigg( e^{j\frac{2\pi}{512}[(64-u)x-vy]}+e^{-j\frac{2\pi}{512}[(64+u)x+vy]} \bigg) \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0} \bigg( \cos\frac{2\pi}{512}[(64-u)x-vy]+j\sin{\frac{\pi v}{512}[(64+u)x+vy]} + \cos\frac{2\pi}{512}[(64+u)x+vy]+-(j)\sin{\frac{\pi v}{512}[(64+u)x+vy]} \bigg) \\ & = \frac{1}{2}MN \delta (u-64,v-0)+\frac{1}{2}MN \delta (u+64,v-0) \\ \end{aligned} f=2ei4πx+ei4πx,M=N=512F(u,v)=x=0M1y=0N1f(x,y)ej2π(mux+Nvy)=21x=0M1y=0N1(ej4πx+ej4πx)ej2π(mux+Nvy)=21x=0M1y=0N1(ej(4πxM2πuxN2πvy)+ej(4πx+M2πux+N2πvy))=21x=0M1y=0N1(ej5122π[(64u)xvy]+ej5122π[(64+u)x+vy])=21x=0M1y=0N1(cos5122π[(64u)xvy]+jsin512πv[(64+u)x+vy]+cos5122π[(64+u)x+vy]+(j)sin512

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值