二维离散傅里叶变换最详手算

前置知识

1. 1 复数

​ 定义(符号表示):

​ a + bi (这里a,b是实数,i是虚数单位,a叫做复数的实部,b叫做复数的虚部。可以认为实数a等价于复数a+0i)

​ 几何(复平面):

​ 水平的实轴与垂直的虚轴建立起来的复数的几何表示

在这里插入图片描述

​ 其他理解:

 对于方程 x^2 = 1*x*x = -1   
 我们可以把*x看作是一种变换,经过两次变换,1变成了-1 
 如果我们把这种变换看成是“逆时针旋转90%”,就能够实现1变为-1
 也就是说我们可以把 *i 看作是逆时针旋转90%

​ 如图

在这里插入图片描述

​ 复平面上一个点乘以(-1+7i)的几何意义:

​ 模长增加\srqt(50),方向逆时针旋转arctan(7/-1) = 98.17°

两个复数相乘的结果就是:让它们的模长相乘得到最终的模长,让它们的幅角相加得到最终的幅角

参考文章:https://zhuanlan.zhihu.com/p/48392273

1.2 e的美妙

​ e = 2.718281828459…

​ 指数增长模型

​ 假设你有1元钱存在银行里,银行的利率为100%,若银行一年付一次利息,一年后你可以拿到1元本金+1元利息共两元

​ 假设银行利率不变但利息改为半年一付,那么在半年时候把0.5的利息再次存入银行(复利),一年后能拿到1元本金+1+0.25共2.25元

​ 假设利率还是不是但利息改为四月一付,拿到利息后进行复利,那么一年后能拿到2.37元

在这里插入图片描述

​ 计算公式 // r为增长率,x为增长周期,Q为初始值的Q倍
Q = ( 1 + r ) x Q = (1+r)^x Q=(1+r)x
​ 复利模型

​ 假设利息连续不断的付,进行连续复利,那么利润的这个天花板就是e!如下图

在这里插入图片描述

​ 高等数学的重要极限
e = lim ⁡ n → ∞ ( 1 + 1 n ) n e = \lim_{n \rightarrow ∞}(1+\frac{1}{n})^n e=nlim(1+n1)n
​ 参考文章:https://zhuanlan.zhihu.com/p/48391055

1. 2 欧拉公式

​ 定义:

e i x = cos ⁡ x + i sin ⁡ x e^{ix} = \cos x + i \sin x eix=cosx+isinx

​ 欧拉恒等式x=Π:
e i π = − 1 , e i π + 1 = 0 e^{i\pi} = -1 ,\quad e^{i\pi}+1 =0 eiπ=1,eiπ+1=0

​ 推导:

​ 采用复数cos(x)+i*sin(x)可以描述单位圆周上的点的位置或运动轨迹

在这里插入图片描述

​ 自然底数e的定义式
e = lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ( 1 + 100 % n ) n e = \lim_{n \rightarrow ∞}{(1 + \frac{1}{n})^n}=\lim_{n \rightarrow ∞}{(1 + \frac{100\%}{n})^n} e=nlim(1+n1)n=nlim(1+n100%)n
​ 当增长率为虚数时候
e i = lim ⁡ n → ∞ ( 1 + 100 % ∗ i n ) n = 1 ∗ lim ⁡ n → ∞ ( 1 + 100 % ∗ i n ) n e^i = \lim_{n \rightarrow ∞}{(1 + \frac{100\%*i}{n})^n} = 1*\lim_{n \rightarrow ∞}{(1 + \frac{100\%*i}{n})^n} ei=nlim(1+n100%i)n=1nlim(1+n100%i)n
​ 我们可以把上式拆分,看作是1进行了n次的变换,每一次的变换的模长增量都是1,角度增量都是1/n。

在这里插入图片描述

​ 每一次的旋转如图

image-20210622230247938

即最终转动的弧度为1。由此可得


e i = 1 ∗ lim ⁡ n → ∞ ( 1 + 100 % ∗ i n ) n = cos ⁡ 1 + i ∗ sin ⁡ 1 e^i = 1*\lim_{n \rightarrow ∞}{(1 + \frac{100\%*i}{n})^n} = \cos 1 + i*\sin 1 ei=1nlim(1+n100%i)n=cos1+isin1
​ 更一般地对于e^(ix)

在这里插入图片描述

​ 即最终旋转的弧度为x。由此可得


e i x = 1 ∗ lim ⁡ n → ∞ ( 1 + 100 % ∗ i x n ) n = cos ⁡ x + i ∗ sin ⁡ x e^{ix} = 1*\lim_{n \rightarrow ∞}{(1 + \frac{100\%*ix}{n})^n} = \cos x + i*\sin x eix=1nlim(1+n100%ix)n=cosx+isinx
​ 证毕。

​ 其他等式
sin ⁡ x = e i x − e − i x 2 i cos ⁡ x = e i x + e − i x 2 \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \cos x = \frac{e^{ix}+e^{-ix}}{2} sinx=2ieixeixcosx=2eix+eix
参考文章:https://zhuanlan.zhihu.com/p/48392958

一 定义

在这里插入图片描述

二 例题

2.1 定义展开法

​ 题目
f ( x , y ) = cos ⁡ ( π 4 x ) , x = [ 0 , 511 ] , 计 算 其 二 维 离 散 傅 里 叶 变 换 F ( u , v ) f(x,y) = \cos (\frac{\pi}{4}x),x=[0,511],计算其二维离散傅里叶变换F(u,v) f(x,y)=cos(4πx),x=[0,511],F(u,v)
​ 解:
根 据 欧 拉 公 式 有 f = e i π 4 x + e − i π 4 x 2 , 设 M = N = 512 F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u m x + v N y ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( e j π 4 x + e − j π 4 x ) ∗ e − j 2 π ( u m x + v N y ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( e j ( π 4 x − 2 π u M x − 2 π v N y ) + e − j ( π 4 x + 2 π u M x + 2 π v N y ) ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( e j 2 π 512 [ ( 64 − u ) x − v y ] + e − j 2 π 512 [ ( 64 + u ) x + v y ] ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( cos ⁡ 2 π 512 [ ( 64 − u ) x − v y ] + j sin ⁡ π v 512 [ ( 64 + u ) x + v y ] + cos ⁡ 2 π 512 [ ( 64 + u ) x + v y ] + − ( j ) sin ⁡ π v 512 [ ( 64 + u ) x + v y ] ) = 1 2 M N δ ( u − 64 , v − 0 ) + 1 2 M N δ ( u + 64 , v − 0 ) \begin{aligned} &根据欧拉公式有f = \frac{e^{i\frac{\pi}{4}x}+e^{-i\frac{\pi}{4}x}}{2} ,设M=N=512\\ & F(u,v) = \sum^{M-1}_{x=0} \sum^{N-1}_{y=0}f(x,y)e^{-j2\pi(\frac{u}{m}x+\frac{v}{N}y)} \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}(e^{j\frac{\pi}{4}x}+e^{-j\frac{\pi}{4}x}) *e^{-j2\pi(\frac{u}{m}x+\frac{v}{N}y)}\\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\bigg (e^{j(\frac{\pi}{4}x-\frac{2\pi u}{M}x-\frac{2\pi v }{N}y)}+ e^{-j(\frac{\pi}{4}x+\frac{2\pi u}{M}x+\frac{2\pi v }{N}y)} \bigg) \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\bigg( e^{j\frac{2\pi}{512}[(64-u)x-vy]}+e^{-j\frac{2\pi}{512}[(64+u)x+vy]} \bigg) \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0} \bigg( \cos\frac{2\pi}{512}[(64-u)x-vy]+j\sin{\frac{\pi v}{512}[(64+u)x+vy]} + \cos\frac{2\pi}{512}[(64+u)x+vy]+-(j)\sin{\frac{\pi v}{512}[(64+u)x+vy]} \bigg) \\ & = \frac{1}{2}MN \delta (u-64,v-0)+\frac{1}{2}MN \delta (u+64,v-0) \\ \end{aligned} f=2ei4πx+ei4πx,M=N=512F(u,v)=x=0M1y=0N1f(x,y)ej2π(mux+Nvy)=21x=0M1y=0N1(ej4πx+ej4πx)ej2π(mux+Nvy)=21x=0M1y=0N1(ej(4πxM2πuxN2πvy)+ej(4πx+M2πux+N2πvy))=21x=0M1y=0N1(ej5122π[(64u)xvy]+ej5122π[(64+u)x+vy])=21x=0M1y=0N1(cos5122π[(64u)xvy]+jsin512πv[(64+u)x+vy]+cos5122π[(64+u)x+vy]+(j)sin512πv[(64+u)x+vy])=21MNδ(u64,v0)+21MNδ(u+64,v0)
​ 最后一步的化简过程如下
当 u = 64 , v = 0 时 候 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( cos ⁡ 0 + cos ⁡ π 2 ) = 1 2 M N 当 u ≠ 64 , v ≠ 0 , 例 如 u = 63 , v = 1 时 候 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 ( cos ⁡ 2 π 512 ( x − y ) + j sin ⁡ 2 π 512 ( x − y ) ) = 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 cos ⁡ 2 π 512 ( x − y ) + 1 2 ∑ x = 0 M − 1 ∑ y = 0 N − 1 sin ⁡ 2 π 512 ( x − y ) ( x 固 定 , 展 开 y ) = 1 2 ∑ x = 0 M − 1 ( cos ⁡ 2 π 512 ( x − 0 ) + cos ⁡ 2 π 512 ( x − 1 ) + . . . + cos ⁡ 2 π 512 ( x − 511 ) ) + 1 2 j ∑ x = 0 M − 1 ( sin ⁡ 2 π 512 ( x − 0 ) + sin ⁡ 2 π 512 ( x − 1 ) + . . . + sin ⁡ 2 π 512 ( x − 511 ) ) = 1 2 ∑ x = 0 M − 1 ∗ 0 + 1 2 j ∑ x = 0 M − 1 ∗ 0 = 0 ( 想 象 一 下 一 个 圆 ( 2 π ) ) 分 割 成 了 512 份 并 且 求 和 512 ( M ) 份 , 根 据 对 称 性 可 以 知 道 和 为 0 \begin{aligned} & 当u=64,v=0时候 \\ & \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}(\cos0 + \cos\frac{\pi}{2}) = \frac{1}{2}MN \\ & 当u\neq64,v\neq0,例如u=63,v=1时候 & \\ & \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\bigg( \cos{\frac{2\pi}{512}(x-y)+j\sin{\frac{2\pi}{512}(x-y)}} \bigg) \\ & = \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\cos{\frac{2\pi}{512}(x-y) } + \frac{1}{2}\sum^{M-1}_{x=0} \sum^{N-1}_{y=0}\sin{\frac{2\pi}{512}(x-y) } \quad (x固定,展开y)\\ & = \frac{1}{2}\sum^{M-1}_{x=0}\bigg( \cos{\frac{2\pi}{512}(x-0)}+\cos{\frac{2\pi}{512}(x-1)+...+\cos{\frac{2\pi}{512}(x-511)}} \bigg) + \frac{1}{2}j\sum^{M-1}_{x=0}\bigg( \sin{\frac{2\pi}{512}(x-0)}+\sin{\frac{2\pi}{512}(x-1)+...+\sin{\frac{2\pi}{512}(x-511)}} \bigg) \\ & = \frac{1}{2}\sum^{M-1}_{x=0}*0+\frac{1}{2}j\sum^{M-1}_{x=0}*0 = 0 \quad (想象一下一个圆(2\pi))分割成了512份并且求和512(M)份,根据对称性可以知道和为0 \end{aligned} u=64v=021x=0M1y=0N1(cos0+cos2π)=21MNu=64,v=0u=63v=121x=0M1y=0N1(cos5122π(xy)+jsin5122π(xy))=21x=0M1y=0N1cos5122π(xy)+21x=0M1y=0N1sin5122π(xy)(xy)=21x=0M1(cos5122π(x0)+cos5122π(x1)+...+cos5122π(x511))+21jx=0M1(sin5122π(x0)+sin5122π(x1)+...+sin5122π(x511))=21x=0M10+21jx=0M10=0((2π))512512(M)0
​由此可得
F ( u , v ) = { M N 2 u = 64 , v = 0 M N 2 u = − 64 , v = 0 0 u , v = 其 他 F(u,v)=\left\{ \begin{aligned} & \frac{MN}{2} \quad u=64,v=0 \\ & \frac{MN}{2} \quad u=-64,v=0 \\ & 0\quad u,v=其他 \end{aligned} \right. F(u,v)=2MNu=64,v=02MNu=64,v=00u,v=
​ 验证(matlab中需要进行坐标转换)

image-20210622220542533

​ 使用matlab验证结果

>> x = 0:511;
>> [Y, X] = meshgrid(x,x);
>> f1 = cos(pi/4*X);
>> F1 = fft2(f1);
>> F1c = fftshift(F1);
>> [r1,c1] = find(abs(F1c)>0.1);
>> r1

r1 =

   193
   321

>> c1

c1 =

   257
   257
F1c(193,247)
imshow(abs(F1c))

​ 结论:可以发现,131072约等于1.3107e+05。出现误差的原因可能是matlab计算过程中精度损失

​ 另外一种计算方法

image-20210622220801216

2.2 矩阵累成法

​ 题目:
f ( x , y ) = ( − 1 ) x + y , 0 ≤ x , y ≤ 2 , 计 算 f ( x , y ) 的 D F T   F ( u , v ) , 0 ≤ u , v ≤ 2. f(x,y) = (-1)^{x+y},0\le x,y\le 2,计算f(x,y)的DFT \ F(u,v), 0\le u, v\le 2. f(x,y)=(1)x+y,0x,y2,f(x,y)DFT F(u,v),0u,v2.

​ 解:
设 : M = N = 2 + 1 = 3 根 据 题 目 要 求 应 该 求 9 个 F o u r i e r 系 数 F ( u , v ) = ∑ x = 0 2 ∑ y = 0 2 ( − 1 ) x + y e − j ( 2 π u 3 x + 2 π v 3 y ) ( u = 0 , 1 , 2 ; v = 0 , 1 , 2 ) 设   w = e − j 2 π 3 则 w 2 = e − j 4 π 3 = e − j ( 2 π − 2 π 3 ) = e j 2 π 3 = w ‾ , w 4 = w ‾ 2 = w , w w ‾ = e 0 = 1 其 中 f = [ f ( 0 , 0 ) f ( 0 , 1 ) f ( 0 , 2 ) f ( 1 , 0 ) f ( 1 , 1 ) f ( 1 , 2 ) f ( 2 , 0 ) f ( 2 , 1 ) f ( 2 , 2 ) ] = [ 1 − 1 1 − 1 1 − 1 1 − 1 1 ] 有 F = [ F ( 0 , 0 ) F ( 0 , 1 ) F ( 0 , 2 ) F ( 1 , 0 ) F ( 1 , 1 ) F ( 1 , 2 ) F ( 2 , 0 ) F ( 2 , 1 ) F ( 2 , 2 ) ] = [ 1 1 1 1 w w 2 1 w 2 w 4 ] [ 1 − 1 1 − 1 1 − 1 1 − 1 1 ] [ 1 1 1 1 w w 2 1 w 2 w 4 ] = [ 1 1 − w + w ‾ 1 + w − w ‾ 1 − w + w ‾ 1 − w + 2 w ‾ 3 − w − w ‾ 1 + w − w ‾ 3 − w − w ‾ 2 − 1 + 3 w − w ‾ ] 若 仅 计 算 某 个 F ( u , v ) , 则 可 以 直 接 按 照 公 式 进 行 展 开 , 例 如 F ( 1 , 2 ) = ∑ x = 0 2 ∑ y = 0 2 ( − 1 ) x + y e − j ( 2 π ∗ 1 3 x + 2 π ∗ 2 3 y ) = f ( 0 , 0 ) + f ( 0 , 1 ) e − j 2 π ∗ 2 3 ∗ 1 + f ( 0 , 2 ) e − j 2 π ∗ 2 3 ∗ 2 + f ( 1 , 0 ) e − j 2 π 3 + f ( 1 , 1 ) e − j 2 π 3 e − j 2 π ∗ 2 3 + f ( 1 , 2 ) e − j 2 π 3 e − j 2 π ∗ 2 3 ∗ 2 + f ( 2 , 0 ) e − j 2 π 3 ∗ 2 + f ( 2 , 1 ) e − j 2 π 3 ∗ 2 e − j 2 π ∗ 2 3 + f ( 2 , 2 ) e − j 2 π 3 ∗ 2 e − j 2 π ∗ 2 3 ∗ 2 = 1 − w ′ + w − w + w w ′ − w 2 + w ′ − w ′ 2 + w w ′ = 3 − w ′ − w = 4 \begin{aligned} &设:M = N = 2+1 = 3 \\ &根据题目要求应该求9个Fourier系数 \\ &F(u,v) = \sum^2_{x=0} \sum^2_{y=0}(-1)^{x+y}e^{-{j}(\frac{2\pi u}{3}x+\frac{2\pi v}{3}y)} (u=0,1,2;v=0,1,2) \\ &设\ w=e^{-j\frac{2\pi}{3}}则w^2=e^{-j\frac{4\pi}{3}}=e^{-j(2\pi-\frac{2\pi}{3})}=e^{j\frac{2\pi}{3}}= \overline w,w^4=\overline w^2=w,w\overline w = e^0 = 1 \\ &其中\quad f = \begin{bmatrix} f(0,0)&f(0,1)&f(0,2)\\f(1,0)&f(1,1)&f(1,2)\\ f(2,0)&f(2,1)&f(2,2) \end{bmatrix} = \begin{bmatrix} 1&-1&1\\ -1&1&-1\\ 1&-1&1 \end{bmatrix} \quad \\ & 有 F = \begin{bmatrix} F(0,0)&F(0,1)&F(0,2)\\F(1,0)&F(1,1)&F(1,2)\\ F(2,0)&F(2,1)&F(2,2) \end{bmatrix} = \begin{bmatrix} 1&1&1\\ 1&w&w^2\\ 1&w^2&w^4 \end{bmatrix} \begin{bmatrix} 1&-1&1\\ -1&1&-1\\ 1&-1&1 \end{bmatrix} \begin{bmatrix} 1&1&1\\ 1&w&w^2\\ 1&w^2&w^4 \end{bmatrix} \\ & \quad \quad \quad \quad =\begin{bmatrix} 1&1-w+\overline w&1+w-\overline w\\ 1-w+\overline w &1-w+2\overline w&3-w-\overline w\\ 1+w-\overline w &3-w-\overline w^2 &-1+3w-\overline w \end{bmatrix} \\ &若仅计算某个F(u,v),则可以直接按照公式进行展开,例如 \\ & F(1,2) = \sum^2_{x=0} \sum^2_{y=0}(-1)^{x+y}e^{-{j}(\frac{2\pi *1}{3}x+\frac{2\pi *2}{3}y)} \\ &=f(0,0)+f(0,1)e^{-j\frac{2\pi*2}{3}*1}+f(0,2)e^{-j\frac{2\pi *2}{3}*2}\\ &\quad +f(1,0)e^{-j\frac{2\pi}{3}}+f(1,1)e^{-j\frac{2\pi}{3}}e^{-j\frac{2\pi *2}{3}}+f(1,2)e^{-j\frac{2\pi}{3}}e^{-j\frac{2\pi *2}{3}*2} \\ & \quad + f(2,0)e^{-j\frac{2\pi}{3}*2} + f(2,1)e^{-j\frac{2\pi}{3}*2}e^{-j\frac{2\pi *2}{3}} + f(2,2)e^{-j\frac{2\pi}{3}*2}e^{-j\frac{2\pi *2}{3}*2} \\ &= 1-w'+w-w+ww'-w^2+w'-w'^2+ww' = 3-w'-w = 4 \end{aligned} :M=N=2+1=39FourierF(u,v)=x=02y=02(1)x+yej(32πux+32πvy)(u=0,1,2;v=0,1,2) w=ej32πw2=ej34π=ej(2π32π)=ej32π=w,w4=w2=w,ww=e0=1f=f(0,0)f(1,0)f(2,0)f(0,1)f(1,1)f(2,1)f(0,2)f(1,2)f(2,2)=111111111F=F(0,0)F(1,0)F(2,0)F(0,1)F(1,1)F(2,1)F(0,2)F(1,2)F(2,2)=1111ww21w2w41111111111111ww21w2w4=11w+w1+ww1w+w1w+2w3ww21+ww3ww1+3wwF(u,v),,F(1,2)=x=02y=02(1)x+yej(32π1x+32π2y)=f(0,0)+f(0,1)ej32π21+f(0,2)ej32π22+f(1,0)ej32π+f(1,1)ej32πej32π2+f(1,2)ej32πej32π22+f(2,0)ej32π2+f(2,1)ej32π2ej32π2+f(2,2)ej32π2ej32π22=1w+ww+www2+ww2+ww=3ww=4

2.3 逆傅里叶变换法

​ 题目
f ( x , y ) = cos ⁡ ( π 8 x + π y ) + 3 sin ⁡ ( π 16 x ) ( x = 0 − 255 , y = 0 − 255 ) , 计 算 它 的 离 散 傅 里 叶 变 换 F ( u , v ) f(x,y) = \cos (\frac{\pi}{8}x+\pi y) + 3\sin(\frac{\pi}{16}x) \quad (x=0-255,y=0-255),计算它的离散傅里叶变换F(u,v) f(x,y)=cos(8πx+πy)+3sin(16πx)(x=0255,y=0255),F(u,v)
​ 解:
设 M = N = 256 , 则 有 π 8 = 2 π M × 16 , π = 2 π N × 128 , π 16 = 2 π M × 8 f ( x , y ) = cos ⁡ ( 2 π ∗ 16 512 x + 2 π ∗ 128 N y ) + 3 sin ⁡ 2 π ∗ 8 M x = 1 M N [ M N 2 [ e j ( 2 π ∗ 16 M x + 2 π ∗ 128 N y ) + e − j ( 2 π ∗ 16 M x + 2 π ∗ 128 N y ) ] + 3 M N 2 j [ e j 2 π ∗ 8 M x − e − j 2 π ∗ 8 M x ] ] = 1 M N ∑ u 255 ∑ v 255 F ( u , v ) e j ( 2 π u M x + 2 π v n y ) ( 根 据 反 变 换 公 式 可 知 前 面 的 那 个 系 数 就 是 取 不 同 u , v , F ( u , v ) 对 应 的 值 ) 可 知 F ( 16 , 128 ) = F ( − 16 , − 128 ) = F ( − 19 + k M , − 128 + k N ) = F ( 240 , 128 ) = M N 2 F ( − 8 , 0 ) = F ( − 8 , 0 ) = F ( 248 , 256 ) = F ( 248 , 0 ) = 3 M N 2 j \begin{aligned} & 设M=N=256,则有\frac{\pi}{8} = \frac{2\pi}{M}\times16,\pi = \frac{2\pi}{N}\times128,\frac{\pi}{16}=\frac{2\pi}{M}\times8 \\ & f(x,y) = \cos({\frac{2\pi*16}{512}x}+\frac{2\pi*128}{N}y)+3\sin{\frac{2\pi*8}{M}x} \\ & = \frac{1}{MN}\bigg[ \frac{MN}{2}\big[e^{j(\frac{2\pi*16}{M}x+\frac{2\pi*128}{N}y)}+ e^{-j(\frac{2\pi*16}{M}x+\frac{2\pi*128}{N}y)}\big] +\frac{3MN}{2j}\big[ e^{j}\frac{2\pi*8}{M}x - e^{-j}\frac{2\pi*8}{M}x\big]\bigg] \\ & = \frac{1}{MN}\sum_u^{255}\sum_v^{255}F(u,v)e^{j(\frac{2\pi u}{M}x + \frac{2\pi v}{n}y)} \\ & (根据反变换公式可知前面的那个系数就是取不同u,v,F(u,v)对应的值)可知 \\ & F(16,128)=F(-16,-128)=F(-19+kM,-128+kN)=F(240,128)=\frac{MN}{2} \\ & F(-8,0)=F(-8,0)=F(248,256)=F(248,0) = \frac{3MN}{2j} \end{aligned} M=N=2568π=M2π×16,π=N2π×128,16π=M2π×8f(x,y)=cos(5122π16x+N2π128y)+3sinM2π8x=MN1[2MN[ej(M2π16x+N2π128y)+ej(M2π16x+N2π128y)]+2j3MN[ejM2π8xejM2π8x]]=MN1u255v255F(u,v)ej(M2πux+n2πvy)(u,vF(u,v))F(16,128)=F(16,128)=F(19+kM,128+kN)=F(240,128)=2MNF(8,0)=F(8,0)=F(248,256)=F(248,0)=2j3MN
​ matlab验证

image-20210622225635793

在Matlab里验证时,这两个都从频谱图看(或居中或左上角),或不看频谱,直接看F也行。频谱是Fourier系数的模。abs(F)

​ 使用逆变换求解2.1
π 4 = 2 π 512 × 64 f ( x , y ) = 1 M N ∗ M N 2 ( e j 2 π 512 ∗ 64 + e − j 2 π 512 ∗ 64 ) 可 知 当 v = 64 , u = 0 时 候 F ( 64 , 0 ) = M N 2 \begin{aligned} & \frac{\pi}{4} = \frac{2\pi}{512}\times64 \\ & f(x,y) = \frac{1}{MN}*\frac{MN}{2}(e^{j\frac{2\pi}{512}*64}+e^{-j\frac{2\pi}{512}*64}) \\ & 可知当v=64,u=0时候F(64,0)=\frac{MN}{2} \end{aligned} 4π=5122π×64f(x,y)=MN12MN(ej5122π64+ej5122π64)v=64u=0F(64,0)=2MN

2.4 总结

​ DFT分解计算
F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( 2 x M + v y N ) = ∑ x = 0 M − 1 e − j 2 π u x / M ∑ y = 0 N − 1 f ( x , y ) e − j 2 π v y / N = ∑ x = 0 M − 1 e − j 2 π u x / M F ( x , v ) \begin{aligned} F(u,v) & = \sum^{M-1}_{x=0} \sum^{N-1}_{y=0}f(x,y)e^{-{j2\pi}(\frac{2x}{M}+\frac{vy}{N})} \\ & = \sum^{M-1}_{x=0}e^{-{j2\pi}ux/M} \sum^{N-1}_{y=0}f(x,y)e^{-{j2\pi}vy/N} \\ & = \sum^{M-1}_{x=0}e^{-{j2\pi}ux/M}F(x,v) \end{aligned} F(u,v)=x=0M1y=0N1f(x,y)ej2π(M2x+Nvy)=x=0M1ej2πux/My=0N1f(x,y)ej2πvy/N=x=0M1ej2πux/MF(x,v)
​ 固定x,展开y
F ( x , v ) = ∑ x = 0 M − 1 f ( x , y ) e − j 2 π v y / N F ( x , 0 ) = ∑ x = 0 M − 1 f ( x , y ) ∗ 1 F ( x , 1 ) = ∑ x = 0 M − 1 f ( x , y ) e − j 2 π v / N = ∑ x = 0 M − 1 f ( x , y ) w v F ( x , 2 ) = ∑ x = 0 M − 1 f ( x , y ) e − j 2 π v ∗ 2 / N = ∑ x = 0 M − 1 f ( x , y ) w 2 v F ( x , N − 1 ) = ∑ x = 0 M − 1 f ( x , y ) e − j 2 π v ∗ ( N − 1 ) / N = ∑ x = 0 M − 1 f ( x , y ) w ( N − 1 ) v 由 此 可 得 B 矩 阵 的 第 v 列 所 对 应 系 数 为 [ 1   w v   w 2 v   . . . w ( N − 1 ) v ] 例 如 在 2.3 求 解 F ( 1 , 2 ) 时 候 , 矩 阵 B 的 第 ( 2 + 1 / / + 1 是 因 为 矩 阵 下 标 默 认 从 1 开 始 ) 列 为 [ 1   w 2   w 2 ∗ 2 ] \begin{aligned} & F(x,v) = \sum^{M-1}_{x=0}f(x,y)e^{-{j2\pi}vy/N} \\ \\ & F(x,0) = \sum^{M-1}_{x=0}f(x,y)*1 \\ & F(x,1) = \sum^{M-1}_{x=0}f(x,y)e^{-j2\pi v/N}=\sum^{M-1}_{x=0}f(x,y)w^v \\ & F(x,2) = \sum^{M-1}_{x=0}f(x,y)e^{-j2\pi v *2/N}=\sum^{M-1}_{x=0}f(x,y)w^{2v} \\ & F(x,N-1) = \sum^{M-1}_{x=0}f(x,y)e^{-j2\pi v *(N-1)/N}=\sum^{M-1}_{x=0}f(x,y)w^{(N-1)v} \\ & 由此可得B矩阵的第v列所对应系数为[1 \ w^v \ w^{2v} \ ...w^{(N-1)v}] \\ & 例如在2.3求解F(1,2)时候,矩阵B的第(2+1//+1是因为矩阵下标默认从1开始)列为[1\ w^2 \ w^{2*2}] \end{aligned} F(x,v)=x=0M1f(x,y)ej2πvy/NF(x,0)=x=0M1f(x,y)1F(x,1)=x=0M1f(x,y)ej2πv/N=x=0M1f(x,y)wvF(x,2)=x=0M1f(x,y)ej2πv2/N=x=0M1f(x,y)w2vF(x,N1)=x=0M1f(x,y)ej2πv(N1)/N=x=0M1f(x,y)w(N1)vBv[1 wv w2v ...w(N1)v]2.3F(1,2)B(2+1//+11)[1 w2 w22]
​ 更一般地,记
w 1 = e − j 2 π / M , w 2 = e − j 2 π / N A = [ 1 1 1 . . . . 1 1 w 1 w 1 2 . . . . w 1 M − 1 1 w 1 2 ( w 1 2 ) 2 . . . . ( w 1 M − 1 ) 2 . . . . . . . . . . . . 1 w 1 M − 1 ( w 1 2 ) M − 1 . . . . ( w 1 M − 1 ) M − 1 ] M × M B = [ 1 1 1 . . . . 1 1 w 2 w 2 2 . . . . w 2 N − 1 1 w 2 2 ( w 2 2 ) 2 . . . . ( w 2 N − 1 ) 2 . . . . . . . . . . . . 1 w 2 N − 1 ( w 2 2 ) N − 1 . . . . ( w 2 N − 1 ) N − 1 ] N × N w_1 = e^{-j2\pi /M}, w_2 = e^{-j2\pi /N} \\ A = \begin{bmatrix} 1 & 1 & 1 & .... & 1 \\ 1 & w_1 & w_1^2 & .... & w_1^{M-1} \\ 1 & w_1^2 & (w_1^2)^{2} & .... & (w_1^{M-1})^2 \\ ..& .. & .. & .... & .. \\ 1 & w_1^{M-1} & (w_1^2)^{M-1} & .... & (w_1^{M-1})^{M-1} \end{bmatrix}_{M\times M} \quad B = \begin{bmatrix} 1 & 1 & 1 & .... & 1 \\ 1 & w_2 & w_2^2 & .... & w_2^{N-1} \\ 1 & w_2^2 & (w_2^2)^{2} & .... & (w_2^{N-1})^2 \\ ..& .. & .. & .... & .. \\ 1 & w_2^{N-1} & (w_2^2)^{N-1} & .... & (w_2^{N-1})^{N-1} \end{bmatrix}_{N\times N} \quad \\ w1=ej2π/M,w2=ej2π/NA=111..11w1w12..w1M11w12(w12)2..(w12)M1....................1w1M1(w1M1)2..(w1M1)M1M×MB=111..11w2w22..w2N11w22(w22)2..(w22)N1....................1w2N1(w2N1)2..(w2N1)N1N×N

​ 那么二维离散傅里叶变换可以表示为
F m × n = A m × m f m × n B n × n F_{m\times n} = A_{m\times m}f_{m\times n}B_{n \times n} Fm×n=Am×mfm×nBn×n
​ 记
共 轭 转 置   记   w ‾ 1 = e j 2 π / M , w ‾ 2 = e j 2 π / N A H = [ 1 1 1 . . . . 1 1 w ‾ 1 w ‾ 1 2 . . . . w ‾ 1 M − 1 1 w ‾ 1 2 ( w ‾ 1 2 ) 2 . . . . ( w ‾ 1 M − 1 ) 2 . . . . . . . . . . . . 1 w ‾ 1 M − 1 ( w ‾ 1 2 ) M − 1 . . . . ( w ‾ 1 M − 1 ) M − 1 ] M × M 性 质 A A H = M I , 由 此 可 得 A H F B H = A H A f B B H = M I m ∗ m f N I n ∗ n = M N f 共轭转置\ 记 \ \overline w_1 = e^{j2\pi /M}, \overline w_2 = e^{j2\pi /N}\\ A^H = \begin{bmatrix} 1 & 1 & 1 & .... & 1 \\ 1 & \overline w_1 & \overline w_1^2 & .... & \overline w_1^{M-1} \\ 1 & \overline w_1^2 & (\overline w_1^2)^{2} & .... & (\overline w_1^{M-1})^2 \\ ..& .. & .. & .... & .. \\ 1 & \overline w_1^{M-1} & (\overline w_1^2)^{M-1} & .... & (\overline w_1^{M-1})^{M-1} \end{bmatrix}_{M\times M} \quad \\ 性质AA^H=MI, 由此可得A^H F B^H = A^HAfBB^H=MI_{m*m}fNI_{n*n}=MNf \\   w1=ej2π/M,w2=ej2π/NAH=111..11w1w12..w1M11w12(w12)2..(w12)M1....................1w1M1(w1M1)2..(w1M1)M1M×MAAH=MI,AHFBH=AHAfBBH=MImmfNInn=MNf
​ 那么可推出离散傅里叶反变换IDFT
f = 1 M N A H F B H = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x / M + v y / N ) f = \frac{1}{MN} A^H F B^H = \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\pi(ux/M+vy/N)} f=MN1AHFBH=MN1u=0M1v=0N1F(u,v)ej2π(ux/M+vy/N)

三 参考文章

  1. https://zhuanlan.zhihu.com/p/48392273
  2. https://zhuanlan.zhihu.com/p/48391055
  3. https://zhuanlan.zhihu.com/p/48392958
  4. https://blog.csdn.net/chenf1999/article/details/112253585
  • 18
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值