Spring AI 1.1 正式发布,新功能介绍

部署运行你感兴趣的模型镜像

Spring AI 1.1 已经正式发布。这是 Spring AI 1.0 之后的第一个较大版本的升级。这次版本升级包含的内容比较多,这里进行一下具体的介绍。

最大的改进来自于对 MCP 的支持,具体包括如下内容:

  • Spring Boot 的自动配置功能。

  • 使用注解来更方便地创建 MCP 中的不同实体和通知的处理器。

  • 所集成的 MCP Java SDK 版本升级到了 0.16.0。

  • 对 MCP 协议版本的支持升级到了最新的 2025-06-18,这也是服务器的默认版本。

  • 在 stdio 和HTTP SSE 之上,增加了对 Streamable HTTP 的支持。

  • 通过 Spring Boot starter 快速创建使用不同传输方式的 MCP 服务器和客户端。

使用注解创建 MCP 实体和通知的处理器,可以在一定程度上简化开发。比如,使用 McpTool 注解创建 MCP 工具。

@McpTool(description = "获取天气信息",    annotations = @McpAnnotations(      readOnlyHint = true    ))public String getCurrentWeather(    @ToolParam(description = "位置") String location) {  return "%s 的天气很晴朗".formatted(location);}

使用 McpResource 注解创建资源。

@McpResource(uri = "sample.txt")public String sample() {  return "Sample text";}

使用 McpPrompt 注解创建提示模板。

@McpPrompt(name = "generateSqlQuery", description = "生成 SQL 查询语句")public String generateSqlQuery(    @McpArg(description = "数据库表的名称") String tableName) {  return "生成 SQL 语句,查询数据库表 %s 中的前 10 行数据。使用 Postgres 语法。".formatted(      tableName);}

ChatClient 增加了对于推理模型和思考模式的支持。这实际上包括两个层次:

  • 第一个层次是在模型相关的 API 上增加了推理模型相关的参数以及模型返回的思考过程。

  • 第二个层次是对不同的模型提供者实现该 API。

在 API 的层次上,新的参数出现在不同模型提供者的 ChatOptions 实现中。模型返回的思考过程出现在 AssistantMessage 的元数据中。实际使用的参数和元数据名称取决于模型提供者。

  • 在 Ollama 中,启用思考模式的参数是 think。对应的值可以是 true、false、或字符串 low、medium 和 high。思考过程的元数据名称是 thinking。

  • 在 OpenAI 中,使用参数 reasoningEffort 设置推理的复杂度,可选值有 low、medium 和 high。思考过程的元数据名称是 reasoningContent。


Advisor 是 Spring AI 中的一个重要功能,可以对发送给大模型的请求和大模型的响应进行处理。Advisor 组织成一个链条。Advisor 按照在链条中的顺序依次执行。Spring AI 1.1 之前,对于一个请求,Advisor 链条中的 Advisor 最多只会被执行一次。Spring AI 1.1 中引入了递归式 Advisor 的概念,允许 Advisor 链条中一部分 Advisor 被重复执行,这样可以实现复杂的智能体流程。比如,我之前介绍过的智能体模式评估者-优化者,其中的生成过程会重复多次。这种模式可以用递归式 Advisor 来实现。

从实现的层次来说,CallAdvisorChain 中新增了一个新的方法 copy,其作用是复制当前 CallAdvisorChain 中,从指定的 CallAdvisor 之后的其余 CallAdvisor,返回一个仅包含这些 CallAdvisor 的新链条。调用新的 CallAdvisorChain 的 nextCall 方法可以执行该链条。多次调用 nextCall 方法可以重复执行该链条。

public interface CallAdvisorChain extends AdvisorChain {    // 创建一个新的 CallAdvisorChain    CallAdvisorChain copy(CallAdvisor after);
}

在向量数据库方面,添加了一个新的 VectorStoreRetriever 接口。VectorStore 接口中的 similaritySearch 方法被单独提取出来,放到了新的 VectorStoreRetriever 接口中。VectorStore 改为继承自 VectorStoreRetriever。VectorStoreRetriever 只包含了对向量数据库的只读操作。如果你希望使用者只能查询向量数据库,可以对外返回 VectorStoreRetriever 接口。

public interface VectorStoreRetriever {  List<Document> similaritySearch(SearchRequest request);
  default List<Document> similaritySearch(String query) {    return this.similaritySearch(SearchRequest.builder().query(query).build());  }}

提示缓存(Prompt Caching)可以节省开支并降低响应时间。很多 AI 服务已经提供了对提示缓存的支持。Spring AI 1.1 可以支持 Anthropic Claude 和 AWS Bedrock 的提示缓存。

除了上面介绍的这些,还有一些比较小的改动。

  • 新的模型提供者,包括 Google GenAI 和 ElevenLabs。

  • 新的模型,包括不同服务提供商推出的新模型,比如 OpenAI 的 GPT-5 系列等。

  • 新的 Chat Memory 存储实现,包括 MongoDB,Oracle JDBC 和 Azure Cosmos DB。

以上就是 Spring AI 1.1 中的重要更新。

您可能感兴趣的与本文相关的镜像

GPT-oss:20b

GPT-oss:20b

图文对话
Gpt-oss

GPT OSS 是OpenAI 推出的重量级开放模型,面向强推理、智能体任务以及多样化开发场景

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值