性能的优化,无非是从两个方面做。一方面是架构上的优化,使用更高性能的架构;另一方面就是从代码层面,更改代码的写法、算法,从而进行优化。
在我看来,不同的程序员,由于思想的不同、性格的不同,写出来的程序,也一定不同。好的代码,应该是一件艺术品,应该是精雕细琢、巧夺天工的。这样才会有最优雅的外观,最强大的性能。下面就一点点说明,如何将python的性能,从代码层面,提高一倍、十倍、甚至百倍。
慎用python内置函数
python内置函数,只是为了应对通用情况。在很多情况下,内置函数的性能,远远不如自己写的,有针对性的函数。动动手,换个算法,就能把性能提高一倍以上。
1,例子:把字符串 '01_HX' 分别提取出'_'前面和'_'后面的字符串。
你会怎么做?用split('_'),还是切片?我想,很多朋友肯定都会用split('_')。
我们来看一下性能差距:
使用切片操作,在I5的苹果机上,每秒可以运行127万次。
使用split('_'),在I5的苹果机上,每秒可以运行90万次。
可以看出,简简单单换一个内置函数,换一点算法,就可以把效率提高40%以上!
测试代码如下:
#! /usr/bin/env python
#coding=utf-8
import time
s = '01_HX'
#---------- test 1---------------
start_time = time.time()
print "start_time:", start_time
j = 1
while 1:
j += 1
a = s[0:2]
a2 = s[3:5]
end_time = time.time()
if end_time - start_time >= 1 :
break
print "loop_num:", j
print "end_time: ",end_time
print a,a2
#---------- test 2---------------
start_time = time.time()
print "start_time:", start_time
j = 1
while 1:
j += 1
a = s.split('_')
end_time = time.time()
if end_time - start_time >= 1 :
break
print "loop_num:", j
print "end_time: ",end_time
print a
测试结果如下:
start_time: 1362031838.14
loop_num: 1274972
end_time: 1362031839.15
01 HX
start_time: 1362031839.15
loop_num: 900801
end_time: 1362031840.16
['01', 'HX']
2, 用range()函数生成序列,与自定义序列
(1)a = range(0,6)
(2)a = [0, 1, 2, 3, 4, 5]
分别测试了一下,结果如下:
loop_num: 1029877
loop_num: 1602341
结论:还是自己显式定义序列,效率更高。
3, 生成一个序列的副本:用copy,与用切片特性
a = [0, 1, 2, 3, 4, 5]
(1)b = copy.copy(a)
(2)b = a[:]
分别测试了一下,结果如下:
loop_num: 677838
loop_num: 1530012
结论:变通的切片应用作为拷贝,比浅拷贝函数效率更高。注意,深拷贝效率很低!
while True 和 while 1
很多Python优化的文章,都会谈及这个。那么,到底能提高多少呢?我们来试试看:
import random
import time
start_time = time.time()
print start_time
j = 1
while True:
j += 1
end_time = time.time()
if end_time - start_time >= 1 :
break
print j
print end_time
print "======== split =========="
start_time = time.time()
print start_time
j = 1
while 1:
j += 1
end_time = time.time()
if end_time - start_time >= 1 :
break
print j
print end_time
输出结果:
1399342863.16
2573550
1399342864.16
======== split ==========
1399342864.18
2973070
1399342865.18
一个是25万,一个是29万。大约提升了16%左右的性能。其实不是很明显。只是聊胜于无。