西门子PLC内部的数据类型大全

本文详细列举了西门子PLC中的各种数据类型,包括BOOL、BYTE等,并标注了不同型号设备的适用范围、长度,为数据采集和分析提供参考。注意可能存在的版本更新情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

西门子PLC的数据类型种类繁多,本文进行了收集,并指明了适用范围、长度,供需要进行数据采集和分析的朋友们参考,本表格整理自博途V14,不保证更高级版本不会新增数据类型,请使用中注意。

类别数据类型长度(位)长度(字节)S7-300/400S7-1200S7-1500
二进制BOOL11/8XXX
二进制BYTE81XXX
二进制WORD162XXX
二进制DWORD324XXX
二进制LWORD648--X
整数SINT81-XX
整数INT162XXX
整数DINT324XXX
整数USINT81-XX
整数UINT162-XX
整数UDINT324-XX
整数LINT648--X
整数ULINT648--X
浮点数REAL324XXX
浮点数LREAL648-XX
定时器S5TIME162X-X
定时器TIME324XXX
定时器LTIME648--X
日期和时间DATE162XXX
日期和时间TIME_OF_DAY (TOD)324XXX
日期和时间LTOD (LTIME_OF_DAY)648--X
日期和时间DT (DATE_AND_TIME)648X-X
日期和时间LDT648--X
日期和时间DTL9612-XX
字符串CHAR81XXX
字符串WCHAR162-XX
字符串STRING**XXX
字符串WSTRING**-XX
PLC 数据类型 (UDT)PLC 数据类型 (UDT)**XXX
匿名结构STRUCT**XXX
ARRAYARRAY [....] of <数据类型>**XXX
指针POINTER486X-X
指针ANY8010X-X
指针VARIANT**-XX
参数类型TIMER162X-X
参数类型COUNTER162X-X
参数类型BLOCK_FC162X-X
参数类型BLOCK_FB162X-X
参数类型BLOCK_DB162X--
参数类型BLOCK_SDB162X--
参数类型BLOCK_SFB162X--
参数类型BLOCK_SFC162X--
参数类型BLOCK_OB162XXX
参数类型VOID**XXX
参数类型PARAMETER**-XX
系统数据类型IEC_TIMER12816XXX
系统数据类型IEC_LTIMER25632--X
系统数据类型IEC_SCOUNTER243-XX
系统数据类型IEC_USCOUNTER243-XX
系统数据类型IEC_COUNTER486XXX
系统数据类型IEC_UCOUNTER486-XX
系统数据类型IEC_DCOUNTER9612-XX
系统数据类型IEC_UDCOUNTER9612-XX
系统数据类型IEC_LCOUNTER19224--X
系统数据类型IEC_ULCOUNTER19224--X
系统数据类型ERROR_STRUCT(ERRORSTRUCT)22428-XX
系统数据类型NREF648-XX
系统数据类型CREF648-XX
系统数据类型VREF9612-XX
系统数据类型SSL_HEADER324X--
系统数据类型CONDITIONS41652-X-
系统数据类型TADDR_Param648-XX
系统数据类型TCON_Param51264-XX
系统数据类型HSC_Period9612-X-
硬件数据类型REMOTE8010-XX
硬件数据类型HW_ANY162-XX
硬件数据类型HW_DEVICE162-XX
硬件数据类型HW_DPMASTER162--X
硬件数据类型HW_DPSLAVE162-XX
硬件数据类型HW_IO162-XX
硬件数据类型HW_IOSYSTEM162-XX
硬件数据类型HW_SUBMODULE162-XX
硬件数据类型HW_MODULE162--X
硬件数据类型HW_INTERFACE162-XX
硬件数据类型HW_IEPORT162-XX
硬件数据类型HW_HSC162-XX
硬件数据类型HW_PWM162-XX
硬件数据类型HW_PTO162-XX
硬件数据类型AOM_IDENT324-XX
硬件数据类型EVENT_ANY324-XX
硬件数据类型EVENT_ATT324-XX
硬件数据类型EVENT_HWINT324-XX
硬件数据类型OB_ANY162-XX
硬件数据类型OB_DELAY162-XX
硬件数据类型OB_TOD162-XX
硬件数据类型OB_CYCLIC162-XX
硬件数据类型OB_ATT162-XX
硬件数据类型OB_PCYCLE162-XX
硬件数据类型OB_HWINT162-XX
硬件数据类型OB_DIAG162-XX
硬件数据类型OB_TIMEERROR162-XX
硬件数据类型OB_STARTUP162-XX
硬件数据类型PORT162-XX
硬件数据类型RTM162-XX
硬件数据类型PIP162--X
硬件数据类型CONN_ANY162-XX
硬件数据类型CONN_PRG162-XX
硬件数据类型CONN_OUC162-XX
硬件数据类型CONN_R_ID324--X
硬件数据类型DB_ANY162-XX
硬件数据类型DB_WWW162-XX
硬件数据类型DB_DYN162-XX

2021年1月31日

### 微调 DeepSeek 并实现 RAG #### 定义微调目标和数据准备 为了使 DeepSeek 获得特定领域的知识或新知识,可以通过细调来达成这一目的[^3]。这不仅能够提升模型在特定领域内的表现,还能优化其处理复杂查询的能力。 ```python from datasets import load_dataset, DatasetDict # 加载自定义的数据集并将其分割成训练集和测试集 data_files = {"train": "path_to_train_data", "test": "path_to_test_data"} dataset = load_dataset('csv', data_files=data_files) # 如果需要的话,可以对数据集进行预处理操作 def preprocess_function(examples): return tokenizer(examples['text'], truncation=True) tokenized_datasets = dataset.map(preprocess_function, batched=True) ``` #### 执行微调过程 完成数据准备工作之后,下一步就是设置微调参数,并启动实际的微调流程。此阶段涉及到选择合适的硬件资源、配置超参数以及监控训练进度等方面的工作。 ```python import transformers from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer model_name = 'deepseek-model-name' model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) training_args = TrainingArguments( output_dir='./results', evaluation_strategy='epoch', learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"] ) trainer.train() ``` #### 整合 RAG 技术 当完成了上述微调工作后,接下来要做的便是引入检索增强生成技术(Retrieval-Augmented Generation),即RAG。该方法允许模型利用外部文档库中的信息作为补充材料,在生成回复时提供更加精准的内容支持[^1]。 ```python from langchain.chains.hybrid_search_chain import HybridSearchChain from langchain.vectorstores import FAISS from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = FAISS.load_local("faiss_index_directory", embeddings) rag_model = HybridSearchChain.from_llm_and_vectorstore(llm=model, vectorstore=vectorstore) ``` 通过这种方式,不仅可以保持原有优势——如无需频繁更新内部参数即可适应新的知识点;同时也克服了一些局限性,比如减少了对外部数据库依赖所带来的额外开销等问题[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值