一 归并排序
归并排序(MERGE-SORT) 是利用归并的思想实现的排序方法, 该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解, 而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起, 即分而治之)。
二 归并排序思想图解——分治
三 归并排序思想图解——治
再来看看治阶段, 我们需要将两个已经有序的子序列合并成一个有序序列, 比如上图中的最后一次合并, 要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列, 合并为最终序列[1,2,3,4,5,6,7,8], 来看下实现步骤。
四 实战
1 需求
a 给你一个数组, Array(8, 4, 5, 7, 1, 3, 6, 2 ), 请使用归并排序完成排序。
b 8000000个数据性能测试
2 代码
package com.atguigu.sort;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
/**
* @className: MergetSort
* @description: 归并排序
* @date: 2021/3/12
* @author: 贝医
*/
public class MergetSort {
/**
* 功能描述:归并排序测试
*
* @param args 命令行
* @author 贝医
* @date 2021/3/12
*/
public static void main(String[] args) {
// 待排序的数
// int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 };
// 8000000个随机数
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
// System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
int temp[] = new int[arr.length]; // 归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序后的时间是=" + date2Str);
// System.out.println("归并排序后=" + Arrays.toString(arr));
}
/**
* 功能描述:先分再治,控制整体流程
*
* @param arr 待排序的数组
* @param left 数组的左边界
* @param right 数组的右边界
* @param arr 待排序的数
* @author 贝医
* @date 2021/3/12
*/
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; // 中间索引
// 向左递归进行分解
mergeSort(arr, left, mid, temp);
// 向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
// 合并
merge(arr, left, mid, right, temp);
}
}
/**
* 功能描述:治,合并流程
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; //初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
// 第一步:先把左右两边(有序)的数据按照规则填充到temp数组直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {//继续
// 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素,即将左边的当前元素,填充到 temp数组,然后 t++, i++
if (arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { //反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
// 第二步:把有剩余数据的一边的数据依次全部填充到temp
while (i <= mid) { // 左边的有序序列还有剩余的元素,全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while (j <= right) { // 右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
// 第三步:将temp数组的元素拷贝到arr
// 注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left;
while (tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}
3 测试结果
排序前的时间是=2021-03-12 21:13:20
排序后的时间是=2021-03-12 21:13:21