归并排序实战

本文详细介绍了归并排序的基本原理及其分治策略的应用过程。通过直观的图解展示了排序过程中“分”与“治”的具体操作,并提供了一个完整的归并排序算法实现案例,包括对800万个随机数据进行排序的性能测试。

一 归并排序

归并排序(MERGE-SORT) 是利用归并的思想实现的排序方法, 该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解, 而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起, 即分而治之)。

二 归并排序思想图解——分治

三 归并排序思想图解——治

再来看看治阶段, 我们需要将两个已经有序的子序列合并成一个有序序列, 比如上图中的最后一次合并, 要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列, 合并为最终序列[1,2,3,4,5,6,7,8], 来看下实现步骤。

四 实战

1 需求

a 给你一个数组, Array(8, 4, 5, 7, 1, 3, 6, 2 ), 请使用归并排序完成排序。

b 8000000个数据性能测试

2 代码

package com.atguigu.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

/**
* @className: MergetSort
* @description: 归并排序
* @date: 2021/3/12
* @author: 贝医
*/
public class MergetSort {
    /**
     * 功能描述:归并排序测试
     *
     * @param args 命令行
     * @author 贝医
     * @date 2021/3/12
     */
    public static void main(String[] args) {
        // 待排序的数
        // int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 };
        // 8000000个随机数
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }
        // System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        int temp[] = new int[arr.length]; // 归并排序需要一个额外空间
        mergeSort(arr, 0, arr.length - 1, temp);
        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序后的时间是=" + date2Str);
        // System.out.println("归并排序后=" + Arrays.toString(arr));
    }

    /**
     * 功能描述:先分再治,控制整体流程
     *
     * @param arr   待排序的数组
     * @param left  数组的左边界
     * @param right 数组的右边界
     * @param arr   待排序的数
     * @author 贝医
     * @date 2021/3/12
     */
    public static void mergeSort(int[] arr, int left, int right, int[] temp) {
        if (left < right) {
            int mid = (left + right) / 2; // 中间索引
            // 向左递归进行分解
            mergeSort(arr, left, mid, temp);
            // 向右递归进行分解
            mergeSort(arr, mid + 1, right, temp);
            // 合并
            merge(arr, left, mid, right, temp);
        }
    }

    /**
     * 功能描述:治,合并流程
     *
     * @param arr   排序的原始数组
     * @param left  左边有序序列的初始索引
     * @param mid   中间索引
     * @param right 右边索引
     * @param temp  做中转的数组
     */
    public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left; // 初始化i, 左边有序序列的初始索引
        int j = mid + 1; //初始化j, 右边有序序列的初始索引
        int t = 0; // 指向temp数组的当前索引


        // 第一步:先把左右两边(有序)的数据按照规则填充到temp数组直到左右两边的有序序列,有一边处理完毕为止
        while (i <= mid && j <= right) {//继续
            // 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素,即将左边的当前元素,填充到 temp数组,然后 t++, i++
            if (arr[i] <= arr[j]) {
                temp[t] = arr[i];
                t += 1;
                i += 1;
            } else { //反之,将右边有序序列的当前元素,填充到temp数组
                temp[t] = arr[j];
                t += 1;
                j += 1;
            }
        }

        // 第二步:把有剩余数据的一边的数据依次全部填充到temp
        while (i <= mid) { // 左边的有序序列还有剩余的元素,全部填充到temp
            temp[t] = arr[i];
            t += 1;
            i += 1;
        }
        while (j <= right) { // 右边的有序序列还有剩余的元素,就全部填充到temp
            temp[t] = arr[j];
            t += 1;
            j += 1;
        }

        // 第三步:将temp数组的元素拷贝到arr
        // 注意,并不是每次都拷贝所有
        t = 0;
        int tempLeft = left;
        while (tempLeft <= right) {
            arr[tempLeft] = temp[t];
            t += 1;
            tempLeft += 1;
        }
    }
}

3 测试结果

排序前的时间是=2021-03-12 21:13:20
排序后的时间是=2021-03-12 21:13:21

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值