Neo4j Graph Data Science (GDS)
图算法用于计算图、节点或关系的度量。它们可以提供关于图中相关实体(中心性、排名)或社区等固有结构(社区检测、图分区、聚类)的见解。许多图算法都是迭代方法,经常使用随机游动、广度优先或深度优先搜索或模式匹配遍历图进行计算。
由于可能的路径随着距离的增加呈指数增长,许多方法的算法复杂度也很高。
幸运的是,优化算法已经存在,它们利用了图形的某些结构,将已经探索过的部分记忆起来,并将操作并行化。
官方文档:https://neo4j.com/docs/graph-data-science
安装
如APOC的安装一样,github上下载对应版本的jar包。
将jar包放入neo4j的plugins文件夹中.
然后在neo4j.conf中授权即可。
基本步骤
为了保证内存的足够,gds使用以下步骤:
- 创建图:从Neo4j中进行图形投影,放入内存中进行操作。
- 选择算法:选择合适的算法。
- 存储结果&#x