前言
1 这里面重点讨论一下,一篇无线感知论文读取下面我们到底要掌握哪些东西
首先是感知对象的数学模型
其次在总结部分
2 许多关于无线传感的研究成果发表在 ACM SIGCOMM、ACM MobiCom、ACM MobiSys、IEEE INFOCOM、USENIX NSDI、IEEE/ACM ToN、IEEE JSAC、IEEE TMC 等旗舰会议和期刊上。此外,许多知名公司也在探索无传感器传感的产品化,推出各种用于人机交互、安全监控和医疗保健的物联网设备
目录:
- 论文要点
- 实验
一 论文要点
一篇paper 读下来,我们要搞懂下面23个条目,
比如组合下来 我们会发现其方案是非常多的,下面每一条都是可选项,不是必选项.
类别 | 缩写 | 说明 |
Channel State Information | Tx | 发送天线个数 |
Channel State Information | Rx | 接收天线个数 |
Channel State Information | phase | 相位个数,上限是30 |
Channel State Information | amplitude | 幅度个数,上限是30 |
Channel State Information | windows | 时间窗口大小 |
Noise Reduction | SFO | Sample Timing Offset |
Noise Reduction | CFO | Carrier Frequency Offset |
Noise Reduction | SFO | Sampling Frequency Offset |
Noise Reduction | PDD | packet detection delay (PDD) is a time delay |
Noise Reduction | CSD | Cyclic Shift Diversity |
Noise Reduction | STO | Sample Timing Offset, |
Noise Reduction | 幅度噪声 | 幅度噪声 |
Signal Transform | FFT | 傅里叶变换 |
Signal Transform | STFT | 短时傅里叶变换 |
Signal Transform | DWT | 小波变换 |
Signal Transform | DHT | 离散哈特莱变换 |
Signal Extration | thresholding | 阈值过滤 |
Signal Extration | PCA/SVD | 特征值 |
Alogrithm | Modeling-Based | Fresnel Model, 罗西尼卵形模型/Scattering Model/Ray-tracing Model |
Alogrithm | Learning-based | 深度学习/机器学习 |
application | 上百个 | 跌倒/呼吸/手语/。。。 |
实验 | 实验方案 | 待总结 |
二 实验
实验无疑是无线感知领域中的核心环节。在探讨变分自编码器(VAE)原理时,李宏毅教授深刻指出,无论是基于模型的算法,还是基于学习的算法,其本质都在于实现数据空间向目标空间的精准映射。如下图所示,
在实际实验中,我们所采集到的数据(以绿色部分示意)首先通过编码器被映射至特征空间,进而实现与目标空间的一对一映射(one-to-one)。然而,在部署阶段,我们时常会遭遇一些全新的数据,这些数据与实验中所采集的数据分布存在显著差异,进而使得模型难以进行有效匹配。简而言之,只有庞大的数据集才能使模型充分学习到数据的真实分布特征。
但数据的采集工作高度依赖于实验,而在无线感知领域,如何高效地采集到合适的数据无疑是一个巨大的挑战。这一任务绝非单个公司或团队所能轻易承担,它呼唤着跨领域、跨组织的深入合作与共同努力。
下面是清华大学里面的几个典型的深度学习架构
参考: Understanding CSI | Hands-on Wireless Sensing with Wi-Fi: A Tutorial