【无线感知会议系列-21 】无线感知论文如何读

前言
    

      1   这里面重点讨论一下,一篇无线感知论文读取下面我们到底要掌握哪些东西

首先是感知对象的数学模型

       其次在总结部分

   2 许多关于无线传感的研究成果发表在 ACM SIGCOMM、ACM MobiCom、ACM MobiSys、IEEE INFOCOM、USENIX NSDI、IEEE/ACM ToN、IEEE JSAC、IEEE TMC 等旗舰会议和期刊上。此外,许多知名公司也在探索无传感器传感的产品化,推出各种用于人机交互、安全监控和医疗保健的物联网设备


目录:

  1.     论文要点
  2.      实验


 一    论文要点

 一篇paper 读下来,我们要搞懂下面23个条目,

比如组合下来2^{23} 我们会发现其方案是非常多的,下面每一条都是可选项,不是必选项.

类别缩写说明
Channel State InformationTx发送天线个数
Channel State InformationRx接收天线个数
Channel State Informationphase相位个数,上限是30
Channel State Informationamplitude幅度个数,上限是30
Channel State Informationwindows时间窗口大小
Noise ReductionSFOSample Timing Offset
Noise ReductionCFO Carrier Frequency Offset 
Noise ReductionSFO Sampling Frequency Offset 
Noise ReductionPDDpacket detection delay (PDD) is a time delay
Noise ReductionCSDCyclic Shift Diversity
Noise ReductionSTOSample Timing Offset,
Noise Reduction幅度噪声幅度噪声
Signal TransformFFT傅里叶变换
Signal TransformSTFT短时傅里叶变换
Signal TransformDWT小波变换
Signal TransformDHT离散哈特莱变换
Signal Extrationthresholding阈值过滤
Signal ExtrationPCA/SVD特征值
AlogrithmModeling-BasedFresnel Model, 罗西尼卵形模型/Scattering Model/Ray-tracing Model
AlogrithmLearning-based深度学习/机器学习
application上百个跌倒/呼吸/手语/。。。
实验实验方案待总结

 


二   实验

         实验无疑是无线感知领域中的核心环节。在探讨变分自编码器(VAE)原理时,李宏毅教授深刻指出,无论是基于模型的算法,还是基于学习的算法,其本质都在于实现数据空间向目标空间的精准映射。如下图所示,

在实际实验中,我们所采集到的数据(以绿色部分示意)首先通过编码器被映射至特征空间,进而实现与目标空间的一对一映射(one-to-one)。然而,在部署阶段,我们时常会遭遇一些全新的数据,这些数据与实验中所采集的数据分布存在显著差异,进而使得模型难以进行有效匹配。简而言之,只有庞大的数据集才能使模型充分学习到数据的真实分布特征

       但数据的采集工作高度依赖于实验,而在无线感知领域,如何高效地采集到合适的数据无疑是一个巨大的挑战。这一任务绝非单个公司或团队所能轻易承担,它呼唤着跨领域、跨组织的深入合作与共同努力。

    下面是清华大学里面的几个典型的深度学习架构

   参考: Understanding CSI | Hands-on Wireless Sensing with Wi-Fi: A Tutorial

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值