【无线通讯Paper】[2] Vivisecting Mobility Management in 5G Cellular Networks

这篇是发表在SIGCOMM上的一篇paper

研究方向国内一些移动应用APP厂商:比如抖音,腾讯可以借鉴一下,和终端

厂商联合开发,提高其QOE。

摘要

        随着5G技术对多种无线电频段和不同部署模式(例如独立组网(SA)与非独立组网(NSA))的支持,移动性管理,尤其是切换过程,变得愈发复杂。测量研究表明,频繁的切换会导致5G吞吐量剧烈波动,甚至最糟糕的情况是服务中断

       我们进行了一次跨国(6,200多公里)驾驶旅行,通过深入测量来研究美国三大运营商当前采用的5G移动性管理实践。利用这一丰富的数据集,我们进行了系统分析,以揭示5G运营商所采用的切换机制,并从(4G与5G)无线技术、无线电(低频、中频和高频)频段以及部署(SA与NSA)模式等多个维度对它们进行了比较。

      我们进一步量化了移动性对应用程序性能、功耗和信令开销的影响。我们确定了当前NSA 5G部署面临的关键挑战,这些挑战导致不必要的切换和覆盖范围缩小。

     最后,我们设计了一个全面的切换预测系统Prognos,并证明了其能够提高两个5G应用程序(16K全景视频点播和实时立体视频流)的用户体验质量(QoE)。我们的研究成果已发布在https://github.com/SIGCOMM22-5GMobility/artifact上。


目录:

  1.    INTRODUCTION
  2.    MOBILITY MANAGEMENT TODAY
  3.    MEASUREMENT METHODOLOGY
  4.    IMPACT OF MOBILITY ON APPLICATION  PERFORMANCE
  5.    CHARACTERISTICS OF 5G HANDOVERS
  6.    IMPLICATIONS OF 5G HANDOVERS ON CARRIERS
  7.    4G/5G HANDOVER PREDICTION
  8.    RELATEDWORK
  9.    DISCUSSION
  10.    CONCLUDING REMARKS
  11.   ACKNOWLEDGMENTS

一   INTRODUCTION

        由于5G支持多种无线电频段,移动性管理变得更为复杂。此外,与上一代相比,5G的基站单元(小区)通常更小、更密集,因此小区之间的5G切换(HOs)更为频繁。鉴于4G和5G预计将共存,3GPP已经引入了多种5G非独立组网(NSA)部署架构和5G独立组网(SA)模式[2]。所有这些因素进一步复杂化了5G切换流程:

        除了同一技术内小区之间的水平切换(例如,5G-to-5G 低频段、5G-to-5G-中频段、5G-to-5G 高频段)外,还存在跨技术的垂直切换(例如,4G-to-5G和5G-to-4G)以往在4G/LTE领域的研究[35, 43, 63, 66] 以及最近在5G领域的研究[50, 51, 53, 54, 65]表明,频繁切换会导致5G吞吐量剧烈波动,在最坏的情况下,甚至会导致服务完全“中断”(out-of-service)。这些性能损害将导致应用程序表现不佳,特别是对于5G本应支持的低延迟应用程序,如增强现实/虚拟现实(AR/VR)、edge offloading 和车联万物(V2X)通信。而在3G/4G中观察到的不当切换配置[35, 36, 59]将进一步加剧这种影响。

1.1   学习目标、挑战与数据收集

      鉴于5G切换(Handover, HO)的重要性和复杂性,彻底了解当前商业运营商所采用的5G切换机制和实践做法势在必行。基于这一目标,我们据我们所知首次对5G移动性管理进行了全面而深入的研究。

与实验室实验不同,在真实环境中测量5G切换面临着诸多挑战:

(1)  如何从未越狱的智能手机上获取关键的控制平面信令事件?

(2) 如何在有限的人力和预算下彻底调查各种5G架构(独立组网SA与非独立组网NSA)、无线电频段和运营商?

(3)  如何协调不同层级的数据收集任务?

(4) 如何准确分析切换对用户设备(User Equipment, UE)能耗的影响?

  为了克服这些挑战,我们搭建了一个测量平台,该平台包括:

(1)多部可访问美国三大5G运营商的5G智能手机;

(2)一款定制软件,用于在未越狱的智能手机上捕获与移动性相关的信息;

(3)一款专业测量工具,用于收集蜂窝控制平面事件;

(4)一个带有外部充电宝的物理功耗监测器,用于准确分析用户设备的电池消耗情况。

      利用这一平台,我们进行了一次跨国数据收集实地考察,沿高速公路(超过5560公里)和几个主要城市内部(超过712公里)进行了测量。我们收集了超过600GB的日志数据,在跨越多个维度的数据集中观察到了47,000多次切换,这些维度包括:

(1)运营商(标记为OpX、OpY和OpZ),

(2)无线技术(5G与4G)

(3)5G架构(非独立组网NSA与独立组网SA)

   4)5G频段——低频段、中频段、毫米波(高频段)

据我们所知,这是里程数最大的一次商用5G网络跨层驾驶测试。

 利用表1中总结的独特驾驶数据集,我们进行了详细分析,以获得关于5G切换的关键见解,并揭示其影响。我们的研究发现,主要5G运营商所采用的切换机制之间确实存在显著差异,且这些差异对性能有着重要影响,具体如下所述。

1.2  5G切换如何影响应用?(第4节)

为了研究5G切换对应用体验质量(QoE)的影响,我们考虑了三个案例研究:

i)   实时视频会议,

ii)  实时3D视频流,

iii) 云游戏。

我们的实验表明,5G切换对应用的体验质量产生了不利影响。

例如:

在实时视频会议应用中发生的切换事件导致平均帧率损失率增加了2.24倍,

端到端延迟增加了2.26倍(最高可达14.5倍)。

对于以60帧每秒(FPS)运行的4K云游戏,

我们观察到由于切换,丢帧率平均增加了3.64倍。

    基于我们的实验结果以及对3G/4G移动性研究的先前成果[63, 66],我们注意到5G切换对比4G切换对应用体验质量的影响更为严重——其严重程度取决于切换类型无线电频段和无线电接入技术

    例如,当前大多数5G部署采用非独立组网(NSA),其中4G作为控制平面,5G新空口(5G-NR)作为高速数据平面,此后称为NSA-4C。

   NSA-4C和5G-NR分别在4G eNodeB(eNB)和5G gNodeB(gNB)上发生单独的切换,导致切换更加频繁。特别是,由于毫米波(mmWave)无线电的方向性和较短范围,与使用中频和低频段的5G相比,使用毫米波5G的应用由于毫米波切换(波束之间)而遭受更高的性能波动。从积极的一面来看,在NSA 5G中采用双模式的应用(用户数据可以通过4G和5G同时传输)由于灵活的多无线电范式,减轻了切换的负面影响。

1.3 5G切换的关键特征是什么?


           基于上述发现,我们对5G切换(HO)进行了深入的、基于测量的研究,以揭示其关键特征。我们重点关注三个方面:切换频率、持续时间和用户设备(UE)的能耗。

          我们发现,5G切换确实频繁触发。在高速公路上行驶时,平均每0.4公里就会发生一次5G切换,而4G则是每0.6公里一次。切换频率取决于5G的架构和频段:与非独立组网(NSA)相比,5G低频段独立组网(SA)的切换频率较低(NSA每0.4公里一次,而5G低频段SA每0.9公里一次),这是因为NSA需要为NSA-4C和5G-NR分别执行切换程序;在毫米波(mmWave)5G中,NSA切换尤为频繁(每0.13公里一次),而中低频段5G的切换频率较低(每0.35/0.4公里一次),这是由于毫米波基站的覆盖范围较小。

          在切换持续时间方面,NSA 5G的平均切换完成时间为167毫秒,比4G切换长1.19倍。为了理解5G切换时间更长的原因,我们将5G切换分解为多个阶段。研究发现,在NSA 5G中,切换准备阶段(即基站做出切换决策的阶段)占整个切换持续时间的41%。

         与4G相比,NSA 5G的切换准备阶段平均增加了48%,这导致了数据面中断时间更长(比4G长1.4倍)。这表明NSA 5G切换的复杂性可能是主要原因,因为它同时涉及5G基站(gNB)和4G基站(eNB)。令人惊讶的是,我们在许多SA 5G切换中也观察到较高的准备时间,这可能归因于当前SA 5G技术尚不成熟,仍处于商业部署的早期阶段。

       我们还研究了5G切换对UE能耗的影响。结果表明,这种影响不可忽视:一部智能手机以130公里/小时的速度行驶1小时(无用户数据传输或接收),平均会经历553次5G切换,消耗34.7毫安时的能量。相比之下,4G切换仅消耗3.4毫安时的能量。这表明减少与切换相关的信令消息数量非常重要,因为这些消息与5G切换期间能耗的增加呈正相关。

       每分钟9次

 5G切换对运营商的影响是什么?


我们的分析还揭示了运营商侧潜在的改进空间。我们总结了三个关键发现:

首先:

  我们通过广泛的驾驶测试描绘了与切换密切相关的5G小区覆盖情况。我们发现,对于NSA 5G:

  单个5G小区的平均覆盖范围(直径)在低频段、中频段和毫米波频段分别为1.4公里、0.73公里和0.15公里。

特别是对于低频段NSA 5G,尽管数据面(5G-NR)在低频段运行,但其耦合的控制面(NSA-4C)仍然使用中频段,这降低了低频段5G-NR的有效覆盖范围,因为NSA-4C的切换总是会触发5G-NR的切换。

其次:  切换的目的是提高用户设备(UE)的接收信号强度,从而提升吞吐量。然而,我们发现,在两个gNB之间的5G→5G切换往往会降低性能,切换后的中位带宽减少了14%。这是因为NSA 5G不支持gNB之间的直接切换;相反,UE会经历5G→4G和4G→5G的切换,每次切换都是独立进行的,而没有考虑整体(5G→5G)信号强度的提升。

第三:   我们发现,对于NSA切换,如果(源或目标)gNB和eNB位于同一物理塔上,其切换持续时间显著短于gNB和eNB不在同一位置的切换,因为跨塔通信会引入延迟。

这些发现不仅揭示了NSA 5G的新低效问题,还为运营商如何减轻5G切换的影响提供了有价值的提示,例如考虑4G/5G天线的位置,以及在做出切换决策时考虑整体切换顺序。

我们能否预测5G切换以改善应用体验质量?

最后但同样重要的是,我们探索5G切换预测,以帮助应用程序适应并减轻频繁5G切换带来的负面影响。为此,我们开发了一个稳健且有效的5G切换预测框架(称为Prognos)。该框架利用观察到的信号强度读数、用户设备(UE)端的测量报告(MRs)以及过去的切换来预测未来的切换及其类型。Prognos可以与任何符合3GPP标准的5G部署配合使用,而无需从运营商处获取专有信息。Prognos包含一个新颖的两阶段预测流程。它首先预测决定用户设备向基站发送的测量报告的未来信号强度,然后学习基站基于测量报告做出切换决策的逻辑。与单一模型相比,将用户设备测量报告推断和网络侧决策逻辑学习解耦,通过消除间接或不必要的特征,降低了模型复杂性并提高了准确性。

我们使用自己的数据集对Prognos进行了广泛评估。

在预测4G/5G切换方面&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值