Stable Diffusion插件Recolor实现黑白照片上色

本文介绍了如何通过Recolor插件结合SD技术,将老旧照片转换为彩色,包括下载插件和模型、安装步骤,以及详细的操作方法,如选择ControlNet单元和调整GammaCorrection参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天跟大家分享一个使用Recolor插件通过SD实现老旧照片轻松变彩色,Recolor翻译过来的含义就是重上色,该模型可以保持图片的构图,它只会负责上色,图片不会发生任何变化。

一:插件下载地址

https://github.com/pkuliyi2015/sd-webui-stablesr

本站镜像下载:【免费】stablediffusion插件应用stablesr资源-CSDN文库

国内可替代镜像

https://gitee.com/han51535/sd-webui-stablesr.git

安装方法:

注意安装完成后,要重新启动SD。

二:下载模型

模型列表:

下载地址:https://huggingface.co/lllyasviel/sd_control_collection/tree/main

很抱歉,登录不了,具体什么页面不知道,不过从国内其他站点收集了这四个模型,放在百度网供大家下载

链接:https://pan.baidu.com/s/1e5fjczxI6krzZM-sUIZuNA?pwd=67s9 
提取码:67s9 

其中模型:

iocalb_sd15_recolor.safetensors,放置位置:stable-diffusion-webui/extensions/sd-webui-controlnet/models/

v2-1_768-ema-pruned.ckpt,放置位置:stable-diffusion-webui/models/Stable-Diffusion/

vqgan_cfw_00011_vae_only.ckpt,旋转位置:stable-diffusion-webui/models/VAE/

webui_768v_139.ckpt,放置位置:/stable-diffusion-webui/extensions/sd-webui-stablesr/models/

三:使用方法

1、打开stable diffusion界面,选择”文生图txt2img”,打开ControlNet,选择ControlNet Unit 0。如下图。并按1-7选择相关参数,如下图

2、上传黑白照片

调节Gamma Correction的值可以加深上色深度,值越大,颜色越深。

### 使用 Stable Diffusion 对黑白图片进行上色 #### 准备工作 为了利用 Stable Diffusion 进行黑白照片上色处理,需确保已安装好支持 ControNet 插件的 Web UI 版本[^1]。该版本允许用户加载特定于色彩化的预训练模型或自定义配置。 #### 加载与设置模型 启动应用程序后,在界面内选择用于着色的任务选项,并确认所使用的模型适用于图像颜色恢复任务。对于初次使用者来说,默认推荐的模型通常已经过优化,能够较好地满足一般情况下的需求[^3]。 #### 导入待处理图片 通过界面上提供的文件上传功能导入目标黑白照片。此时应注意检查图片质量及分辨率,因为输入素材的质量直接影响最终输出效果。 #### 应用 ControNet 的 Recolor 功能 选定合适的参数设定之后,激活 ControNet 提供的 `Recolor` 工具来进行自动配色操作。此过程会基于 AI 学习到的艺术风格以及历史数据来推测最可能的颜色组合方案。 #### 调整细化结果 初步生成的结果可能会存在某些细节上的偏差或是不符合个人审美预期的地方。这时可以借助软件内置的各种编辑工具对手动调整不满意的部分直至满意为止。 #### 输出保存成果 当一切准备就绪并且对合成后的彩色图像感到满意时,就可以导出成品了。记得选择恰当的格式和压缩率以保持最佳视觉呈现效果。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "CompVis/stable-diffusion-v1-4" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler) # Assuming grayscale_image is the path to your black and white image file. grayscale_image = "./path_to_your_black_and_white_image.png" output = pipe(grayscale_image).images[0] output.save("./colored_output.png") # Save colored output as PNG format ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BBM的开源HUB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值