python数据分析 | pandas.DataFrame基本聚合函数统计数据

相关扩展库
1# -*- coding: UTF-8 -*-
2
3import pandas as pd
4
5data_dict = {'first_col': [1, 2, 3, 4], 'second_col': [5, 6, 7, 8]}
6
7df = pd.DataFrame(data_dict)
统计简略信息
 1# 生成简要的数据统计数据
 2
 3describe(percentiles=None, include=None, exclude=None)
 4#        first_col  second_col
 5# count   4.000000    4.000000    总数量
 6# mean    2.500000    6.500000    均值
 7# std     1.290994    1.290994    方差
 8# min     1.000000    5.000000    最小值
 9# 25%     1.750000    5.750000    25%数据量时的数据
10# 50%     2.500000    6.500000    50%数据量时的数据
11# 75%     3.250000    7.250000    75%数据量时的数据
12# max     4.000000    8.000000    最大值
13
14# percentiles 指定统计量,默认是25%、50%、75%时的数据量
15# include 包含数据类型,include='all'同时包含离散型与数值型的统计特征、include='O'包含离散型、默认include=None包含数值型
16# exclude 不包含数据类型,exclude='O'不包含离散型
17
18print(df.describe(percentiles=[.2,.4,.6,.8], include=None, exclude='O'))
head()与tail()函数
1# head() 函数前多少行
2
3print(df.head(2))
4
5# tail() 函数后多少行
6
7print(df.tail(2))
数据聚合统计
 1# 获取某一列的和
 2
 3print(df['first_col'].sum())
 4
 5# 获取某一列的均值
 6
 7print(df['first_col'].mean())
 8
 9# 获取某一列的总数量
10
11print(df['first_col'].count())
12
13# 获取某一列的最大值
14
15print(df['first_col'].max())
16
17# 获取某一列的最小值
18
19print(df['first_col'].min())
数据结构统计
 1# 返回列的数据类型
 2
 3print(df.dtypes)
 4
 5# size()返回数据总数
 6
 7print(df.size)
 8
 9# 返回数据形状,几行几列
10
11print(df.shape)
12
13# 返回列数
14
15print(df.ndim)
16
17# 返回每一列的名称
18
19print(df.axes)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python 集中营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值