如何使用Python keras进行深度神经网络的参数调优?

本文介绍了使用Python Keras进行深度神经网络参数调优的步骤,包括数据集准备、模型构建、GridSearchCV调参、模型训练与评估,通过实例展示了如何优化模型性能。
摘要由CSDN通过智能技术生成

神经网络是现代机器学习的基础之一,而深度神经网络是目前最为流行和广泛应用的一种神经网络。

深度神经网络的训练过程中需要进行参数调优,以达到更好的预测性能。在本文中,我们将介绍如何使用Python keras进行深度神经网络的参数调优。

  1. 数据集准备

在进行神经网络的参数调优之前,我们需要准备好一个适当的数据集。数据集应该具有充足的数据量和代表性。

在这里,我们将使用keras自带的MNIST数据集作为例子。

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python 集中营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值