1.特点
1.1 特点:
能被7、11、13整除的整数都具有以下特点:即从右往左没三位一截,截出的奇数段之和与偶数段之和的差如果是7、11或13的倍数,那么该整数便可以被7、11或13整除。
1.2 举例说明:
数字:1234567890 三位一截得到:1,234,567,890
如果890+234-567-1得到的值“556”可以被7、11或13整除,那么1234567890即可被该数整除。
2.原理(同余)
我们知道任何一个数都可以写成 m=k*n+q(0≤q<n) 的格式,所以我们可以构造m=1001n+q。因为1001=7*11*13,所以1001n肯定是7、11、13的倍数,那么如果q可以被7、11或13整除,则m就可以被该数整除。
3.三维一截的原因(位值原理)
一个多位数,如果每三位一截,那么相邻的每一段则为千倍的关系。如1.2中的例子1234567890可以写成这样:1234567890=1*1000^3+234*1000^2+567*1000+890
上边的式子我们来给他做个变形,把1000转变为(1001-1):
1234567890=1*(1001-1)^3+234*(1001-1)^2+567*(1000-1)+890
把上边式子完全展开后得到:
1234567890=1001n+ (890+234_567-1 )(n为整数)
由以上我们可以看到该式子被我们转换成了标题2中的形式,所以即得证标题1所得的原理。