被7、11、13整除的整数的特点以及三位截法的原理

文章介绍了能被7、11、13整除的整数的特点,即通过从右往左每三位一截,计算奇数段和偶数段之和的差,如果这个差是7、11或13的倍数,则原数可被整除。这一方法基于同余原理和位值原理,通过1001(7*11*13)的性质进行数的拆分和变形,验证整除性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.特点

1.1 特点:

        能被7、11、13整除的整数都具有以下特点:即从右往左没三位一截,截出的奇数段之和与偶数段之和的差如果是7、11或13的倍数,那么该整数便可以被7、11或13整除。

1.2 举例说明:

        数字:1234567890        三位一截得到:1,234,567,890

        如果890+234-567-1得到的值“556”可以被7、11或13整除,那么1234567890即可被该数整除。

2.原理(同余)

       我们知道任何一个数都可以写成 m=k*n+q(0≤q<n) 的格式,所以我们可以构造m=1001n+q。因为1001=7*11*13,所以1001n肯定是7、11、13的倍数,那么如果q可以被7、11或13整除,则m就可以被该数整除。

3.三维一截的原因(位值原理)

        一个多位数,如果每三位一截,那么相邻的每一段则为千倍的关系。如1.2中的例子1234567890可以写成这样:1234567890=1*1000^3+234*1000^2+567*1000+890

        上边的式子我们来给他做个变形,把1000转变为(1001-1):

        1234567890=1*(1001-1)^3+234*(1001-1)^2+567*(1000-1)+890

        把上边式子完全展开后得到:

        1234567890=1001n+ (890+234_567-1 )(n为整数)

        由以上我们可以看到该式子被我们转换成了标题2中的形式,所以即得证标题1所得的原理。

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值