初等数论 课堂笔记 第三章 --同余及其一些有趣的应用

本文详细介绍了同余性质及其在万年历计算、ISBN码验真伪、弃九法和判断整数因子等方面的有趣应用。通过实例展示了如何使用这些性质进行计算和验证,如Zeller's congruence、ISBN码校验和弃九法检验乘法结果的正确性。同时,还探讨了奇数的平方与模运算的关系。
摘要由CSDN通过智能技术生成

索引

同余性质

  设 m ∈ Z > 0 ,   a , b ∈ Z m\in { {\mathbb{Z}}_{>0}},\text{ }a,b\in \mathbb{Z} mZ>0, a,bZ

  1. 甲: a ≡ a (   m o d   m ) a\equiv a\left( \bmod m \right) aa(modm)
  2. 乙: a ≡ b (   m o d   m )   ⇒   b ≡ a (   m o d   m ) a\equiv b\left( \bmod m \right)\text{ }\Rightarrow \text{ }b\equiv a\left( \bmod m \right) ab(modm)  ba(modm)
  3. 丙: a ≡ b (   m o d   m ) b ≡ c (   m o d   m ) }   ⇒   a ≡ c (   m o d   m ) \left. \begin{aligned} & a\equiv b\left( \bmod m \right) \\ & b\equiv c\left( \bmod m \right) \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }a\equiv c\left( \bmod m \right) ab(modm)bc(modm)}  ac(modm)
  4. 丁:若 a 1 ≡ b 1 (   m o d   m ) ,   a 2 ≡ b 2 (   m o d   m ) { {a}_{1}}\equiv { {b}_{1}}\left( \bmod m \right),\text{ }{ {a}_{2}}\equiv { {b}_{2}}\left( \bmod m \right) a1b1(modm), a2b2(modm),则
    1. a 1 + a 2 ≡ b 1 + b 2 (   m o d   m ) { {a}_{1}}+{ {a}_{2}}\equiv { {b}_{1}}+{ {b}_{2}}\left( \bmod m \right) a1+a2b1+b2(modm)
    2. a + b ≡ c (   m o d   m )   ⇒   a ≡ c − b (   m o d   m ) a+b\equiv c\left( \bmod m \right)\text{ }\Rightarrow \text{ }a\equiv c-b\left( \bmod m \right) a+bc(modm)  acb(modm)
  5. 戊: a 1 ≡ b 1 (   m o d   m ) a 2 ≡ b 2 (   m o d   m ) }   ⇒   a 1 a 2 ≡ b 1 b 2 (   m o d   m ) \left. \begin{aligned} & { {a}_{1}}\equiv { {b}_{1}}\left( \bmod m \right) \\ & { {a}_{2}}\equiv { {b}_{2}}\left( \bmod m \right) \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }{ {a}_{1}}{ {a}_{2}}\equiv { {b}_{1}}{ {b}_{2}}\left( \bmod m \right) a1b1(modm)a2b2(modm)}  a1a2b1b2(modm)
    特别地, a ≡ b (   m o d   m )   ⇒   a k ≡ b k (   m o d   m ) ,   ∀ k ∈ Z a\equiv b\left( \bmod m \right)\text{ }\Rightarrow \text{ }ak\equiv bk\left( \bmod m \right),\text{ }\forall k\in \mathbb{Z} ab(modm)  akbk(modm), kZ
  6. 己: a ≡ b (   m o d   m ) ,   { a = a 1 d b = b 1 d ,   gcd ⁡ ( d , m ) = 1   ⇒   a 1 ≡ b 1 (   m o d   m ) a\equiv b\left( \bmod m \right),\text{ }\left\{ \begin{aligned} & a={ {a}_{1}}d \\ & b={ {b}_{1}}d \\ \end{aligned} \right.,\text{ }\gcd \left( d,m \right)=1\text{ }\Rightarrow \text{ }{ {a}_{1}}\equiv { {b}_{1}}\left( \bmod m \right) ab(modm), { a=a1db=b1d, gcd(d,m)=1  a1b1(modm)
  7. 庚: { a ≡ b (   m o d   m ) ,   k > 0   ⇒   a k ≡ b k (   m o d   m k ) a ≡ b (   m o d   m ) ,   d ∈ Z > 0 ,   { d ∣ a d ∣ b d ∣ m   ⇒   a d ≡ b d (   m o d   m d ) \left\{ \begin{aligned} & a\equiv b\left( \bmod m \right),\text{ }k>0\text{ }\Rightarrow \text{ }ak\equiv bk\left( \bmod mk \right) \\ & a\equiv b\left( \bmod m \right),\text{ }d\in { {\mathbb{Z}}_{>0}},\text{ }\left\{ \begin{aligned} & \left. d \right|a \\ & \left. d \right|b \\ & \left. d \right|m \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\frac{a}{d}\equiv \frac{b}{d}\left( \bmod \frac{m}{d} \right) \\ \end{aligned} \right. ab(modm), k>0  akbk(modmk)ab(modm), dZ>0, dadbdm  dadb(moddm)
  8. 辛: ∀ i ∈ { 1 , 2 , ⋯   , k } , a ≡ b (   m o d   m i )   ⇒   a ≡ b (   m o d   [ l c m ( m 1 , m 2 ⋯   , m k ) ] ) \forall i\in \left\{ 1,2,\cdots ,k \right\},a\equiv b\left( \bmod { {m}_{i}} \right)\text{ }\Rightarrow \text{ }a\equiv b\left( \bmod \left[ lcm\left( { {m}_{1}},{ {m}_{2}}\cdots ,{ {m}_{k}} \right) \right] \right) i{ 1,2,,k},ab(modmi)  ab(mod[lcm(m1,m2,mk)])
  9. 壬: a ≡ b (   m o d   m ) ,   { d ∣ m d > 0   ⇒   a ≡ b (   m o d   d ) a\equiv b\left( \bmod m \right),\text{ }\left\{ \begin{aligned} & \left. d \right|m \\ & d>0 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }a\equiv b\left( \bmod d \right) ab(modm), { dmd>0  ab(modd)
  10. 癸: a ≡ b (   m o d   m )   ⇒  gcd ( a , m ) = gcd ⁡ ( b , m ) a\equiv b\left( \bmod m \right)\text{ }\Rightarrow \text{ gcd}\left( a,m \right)=\gcd \left( b,m \right) ab(modm)  gcd(a,m)=gcd(b,m)
    因而可以成立以下推理关系:
    { d ∣ m d ∣ a   ⇒ d ∣ gcd ⁡ ( a , m ) = gcd ⁡ ( b , m )   ⇒   d ∣ b \left\{ \begin{aligned} & \left. d \right|m \\ & \left. d \right|a \\ \end{aligned} \right.\text{ }\Rightarrow \left. d \right|\gcd \left( a,m \right)=\gcd \left( b,m \right)\text{ }\Rightarrow \text{ }\left. d \right|b { dmda dgcd(a,m)=gcd(b,m)  db

定理: ∀ a , b ∈ Z \forall a,b\in \mathbb{Z} a,bZ,有 a ≡ b (   m o d   m )   ⇔   m ∣ ( a − b )   ⇔   ∃ t ∈ Z ,   a = b + m t a\equiv b\left( \bmod m \right)\text{ }\Leftrightarrow \text{ }\left. m \right|\left( a-b \right)\text{ }\Leftrightarrow \text{ }\exists t\in \mathbb{Z},\text{ }a=b+mt ab(modm)  m(ab)  tZ, a=b+mt


定理: 若 A α 1 α 2 ⋯ α k ≡ B α 1 α 2 ⋯ α k (   m o d   m ) ,   x i ≡ y i (   m o d   m ) ,   i = 1 , 2 , ⋯   , k { {A}_{ { {\alpha }_{1}}{ {\alpha }_{2}}\cdots { {\alpha }_{k}}}}\equiv { {B}_{ { {\alpha }_{1}}{ {\alpha }_{2}}\cdots { {\alpha }_{k}}}}\left( \bmod m \right),\text{ }{ {x}_{i}}\equiv { {y}_{i}}\left( \bmod m \right),\text{ }i=1,2,\cdots ,k Aα1α2αkBα1α2αk(modm), xiyi(modm), i=1,2,,k,则 ∑ α 1 α 2 ⋯ α k A α 1 α 2 ⋯ a k x 1 α 1 x 2 α 2 ⋯ x k α k ≡ ∑ α 1 α 2 ⋯ α k B α 1 α 2 ⋯ a k y 1 α 1 y 2 α 2 ⋯ y k α k (   m o d   m ) \sum\limits_{ { {\alpha }_{1}}{ {\alpha }_{2}}\cdots { {\alpha }_{k}}}^{ {}}{ { {A}_{ { {\alpha }_{1}}{ {\alpha }_{2}}\cdots { {a}_{k}}}}{ {x}_{1}}^{ { {\alpha }_{1}}}{ {x}_{2}}^{ { {\alpha }_{2}}}\cdots { {x}_{k}}^{ { {\alpha }_{k}}}}\equiv \sum\limits_{ { {\alpha }_{1}}{ {\alpha }_{2}}\cdots { {\alpha }_{k}}}^{ {}}{ { {B}_{ { {\alpha }_{1}}{ {\alpha }_{2}}\cdots { {a}_{k}}}}{ {y}_{1}}^{ { {\alpha }_{1}}}{ {y}_{2}}^{ { {\alpha }_{2}}}\cdots { {y}_{k}}^{ { {\alpha }_{k}}}}\left( \bmod m \right) α1α2αkAα1α2akx1α1x2α2xkαkα1α2αkBα1α2aky1α1y2α2ykαk(modm)特别地,若 a i ≡ b i (   m o d   m ) ,   i = 0 , 1 , 2 , ⋯   , n { {a}_{i}}\equiv { {b}_{i}}\left( \bmod m \right),\text{ }i=0,1,2,\cdots ,n aibi(modm), i=0,1,2,,n,则 a n x n + a n − 1 x n − 1 + ⋯ a 0 ≡ b n x n + b n − 1 x n − 1 + ⋯ + b 0 (   m o d   m ) { {a}_{n}}{ {x}^{n}}+{ {a}_{n-1}}{ {x}^{n-1}}+\cdots { {a}_{0}}\equiv { {b}_{n}}{ {x}^{n}}+{ {b}_{n-1}}{ {x}^{n-1}}+\cdots +{ {b}_{0}}\left( \bmod m \right) anxn+an1xn1+a0bnxn+bn1xn1++b0(modm)特别地,若 x ≡ y (   m o d   m ) x\equiv y\left( \bmod m \right) xy(modm),则 a n x n + a n − 1 x n − 1 + ⋯ + a 0 ≡ a n y n + a n − 1 y n − 1 + ⋯ + a 0 (   m o d   m ) { {a}_{n}}{ {x}^{n}}+{ {a}_{n-1}}{ {x}^{n-1}}+\cdots +{ {a}_{0}}\equiv { {a}_{n}}{ {y}^{n}}+{ {a}_{n-1}}{ {y}^{n-1}}+\cdots +{ {a}_{0}}\left( \bmod m \right) anxn+an1xn1++a0anyn+an1yn1++a0(modm)


若干个正整数的倍数特征(十进制范围内)

   0 0 0

  1. 0 0 0是任意非零整数的倍数;
  2. 任意整数都不是 0 0 0的倍数。

补充
  引用《初等数论(第四版)》里关于因数和倍数的定义:
∀ a ∈ Z \forall a\in \mathbb{Z} aZ, ∀   b ∈ Z ≠ 0 \forall \text{ }b\in { {\mathbb{Z}}_{\ne 0}}  bZ=0,若 ∃ q ∈ Z ,   s . t . a = b q \exists q\in \mathbb{Z},\text{ }s.t.a=bq qZ, s.t.a=bq成立,则称 b b b a a a的因数, a a a b b b的倍数。

   1 1 1

  1. 任意整数都是 1 1 1的倍数。

   2 2 2

  1. 个位数是偶数 0 , 2 , 4 , 6 , 8 0,2,4,6,8 0,2,4,6,8的整数 ⇔ \Leftrightarrow 2 2 2的倍数。因为
    10 ≡ 0 (   m o d   2 ) ⇒ a 0 + ∑ k = 1 n 10 k a k ≡ a 0 + ∑ k = 1 n 0 k a k = a 0 (   m o d   2 ) a ≡ a 0 ≡ 0 (   m o d   2 ) \begin{matrix} 10\equiv 0\left( \bmod 2 \right) \\ \Rightarrow { {a}_{0}}+\sum\limits_{k=1}^{n}{ { {10}^{k}}{ {a}_{k}}}\equiv { {a}_{0}}+\sum\limits_{k=1}^{n}{ { {0}^{k}}{ {a}_{k}}}={ {a}_{0}}\left( \bmod 2 \right) \\ { {a}_{}}\equiv a_0\equiv 0\left( \bmod 2 \right) \\ \end{matrix} 100(mod2)a0+k=1n10kaka0+k=1n0kak=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值