Jenson不等式及其在EM估计与KL散度中的应用

1. Jenson不等式

  Jenson不等式定义:如果 f ( x ) f(x) f(x)是凸函数,则有 E [ f ( x ) ] ≥ f ( E [ x ] ) E[f(x)] \geq f(E[x]) E[f(x)]f(E[x])成立。
  凸函数的充要条件:a,b在 f ( x ) f(x) f(x)定义域上, λ f ( a ) + ( 1 − λ ) f ( b ) ≥ f ( λ a + ( 1 − λ ) b ) \lambda f(a)+(1-\lambda) f(b)\geq f(\lambda a+ (1-\lambda)b) λf(a)+(1λ)f(b)f(λa+(1λ)b)恒成立。
  推论:若 f ( x ) f(x) f(x)为凸函数,则 − f ( x ) -f(x) f(x)为凹函数。所以凹函数的充要条件为a,b在 f ( x ) f(x) f(x)定义域上, λ f ( a ) + ( 1 − λ ) f ( b ) ≤ f ( λ a + ( 1 − λ ) b ) \lambda f(a)+(1-\lambda) f(b)\leq f(\lambda a+ (1-\lambda)b) λf(a)+(1λ)f(b)f(λa+(1λ)b)恒成立。

2. Jenson不等式的证明

  要证 E [ f ( x ) ] ≥ f ( E [ x ] ) E[f(x)] \geq f(E[x]) E[f(x)]f(E[x]),即证 ∑ i = 1 k p i f ( x i ) ≥ f ( ∑ i = 1 k p i x i ) \sum_{i=1}^{k}{p_if(x_i)}\geq f(\sum_{i=1}^{k}{p_ix_i}) i=1kpif(xi)f(i=1kpixi)
  利用数学归纳法证明,在 k = 1 , 2 k=1,2 k=1,2时,上式成立,假设在 k = n k=n k=n时,上式也成立,那么在 k = n + 1 k=n+1 k=n+1时:
   ∑ i = 1 k + 1 p i f ( x i ) = p k + 1 f ( x k + 1 ) + ∑ i = 1 k p i f ( x i ) \sum_{i=1}^{k+1}{p_if(x_i)}=p_{k+1}f(x_{k+1})+\sum_{i=1}^{k}{p_if(x_i)} i=1k+1pif(xi)=pk+1f(xk+1)+i=1kpif(xi)
           = p k + 1 f ( x k + 1 ) + z k ∑ i = 1 k p i z k f ( x i ) , z k = ∑ i = 1 k p i =p_{k+1}f(x_{k+1})+z_k\sum_{i=1}^{k}{\frac{p_i}{z_k}f(x_i)}, z_k=\sum_{i=1}^kp_i =pk+1f(xk+1)+zki=1kzkpif(xi),zk=i=1kpi
           ≥ p k + 1 f ( x k + 1 ) + z k f ( ∑ i = 1 k p i z k x i ) , ∑ i = 1 k p i z k = 1 \geq p_{k+1}f(x_{k+1})+z_kf(\sum_{i=1}^{k}{\frac{p_i}{z_k}x_i}), \sum_{i=1}^{k}{\frac{p_i}{z_k}}=1 pk+1f(xk+1)+zkf(i=1kzkpixi),i=1kzkpi=1
           ≥ f ( p k + 1 x k + 1 + z k ∑ i = 1 k p i z k x i ) , z k + p k + 1 = 1 \geq f(p_{k+1}x_{k+1}+z_k\sum_{i=1}^k{\frac{p_i}{z_k}x_i}),z_k+p_{k+1}=1 f(pk+1xk+1+zki=1kzkpixi),zk+pk+1=1
           ≥ f ( ∑ i = 1 k + 1 p i x i ) \geq f(\sum_{i=1}^{k+1}{p_ix_i}) f(i=1k+1pixi)
   f ( x ) f(x) f(x)定义域为D,上述证明同样可证在 g ( x ) ∈ D g(x)∈D g(x)D时, ∑ i = 1 k p i f ( g ( x i ) ) ≥ f ( ∑ i = 1 k p i g ( x i ) ) \sum_{i=1}^{k}{p_if(g(x_i))}\geq f(\sum_{i=1}^{k}{p_ig(x_i)}) i=1kpif(g(xi))f(i=1kpig(xi))

3. EM估计及Jenson不等式在其中的作用

4. KL散度及Jenson不等式在其中的作用

  KL散度:衡量 p ( x ) , q ( x ) p(x),q(x) p(x),q(x)两个分布的相似性, K L ( p , q ) = E p ( x ) [ l o g ( p ( x i ) q ( x i ) ) ] = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) KL(p,q)=E_{p(x)}[log(\frac{p(x_i)}{q(x_i)})]=\sum_{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)}) KL(p,q)=Ep(x)[log(q(xi)p(xi))]=i=1np(xi)log(q(xi)p(xi))
  利用Jenson不等式证明KL散度恒大于0证明:
   K L ( p , q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) p ( x i ) ) KL(p,q)=\sum_{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)})=-\sum_{i=1}^np(x_i)log(\frac{q(x_i)}{p(x_i)}) KL(p,q)=i=1np(xi)log(q(xi)p(xi))=i=1np(xi)log(p(xi)q(xi)) f ( x ) = − l o g ( x ) f(x)=-log(x) f(x)=log(x)为凸函数, g ( x ) = q ( x ) p ( x ) g(x)=\frac{q(x)}{p(x)} g(x)=p(x)q(x)

5. KL散度与交叉熵损失函数

5.1 信息熵

  香农信息量:信号 x x x发生的概率为 p ( x ) p(x) p(x),则 x x x带有的信息量为 l o g ( 1 p ( x ) ) log(\frac{1}{p(x)}) log(p(x)1),又称为编码x需要的长度。
  信息量的期望,也称信息熵/平均编码长度: E [ l o g ( 1 p ( x ) ) ] = ∑ i = 1 n p ( x i ) l o g ( 1 p ( x i ) ) E[log(\frac{1}{p(x)})]=\sum_{i=1}^np(x_i)log(\frac{1}{p(x_i)}) E[log(p(x)1)]=i=1np(xi)log(p(xi)1)

5.2 相对熵(KL散度)

  相对熵,也叫KL散度,信息论中表示用分布 q ( x ) q(x) q(x)编码实际分布为 p ( x ) p(x) p(x)的信息 x x x比用分布 p ( x ) p(x) p(x)编码信息 x x x额外多出的平均编码长度,统计学上表示两个分布的差异大小,相对熵表示为:
   E p ( x ) [ l o g ( p ( x ) q ( x ) ) ] = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) = ∑ i = 1 n p ( x i ) l o g ( 1 q ( x i ) ) − ∑ i = 1 n p ( x i ) l o g ( 1 p ( x i ) ) E_{p(x)}[log(\frac{p(x)}{q(x)})]=\sum_{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)})=\sum_{i=1}^np(x_i)log(\frac{1}{q(x_i)})-\sum_{i=1}^np(x_i)log(\frac{1}{p(x_i)}) Ep(x)[log(q(x)p(x))]=i=1np(xi)log(q(xi)p(xi))=i=1np(xi)log(q(xi)1)i=1np(xi)log(p(xi)1)

5.3 交叉熵

  交叉熵,表示用分布为 q ( x ) q(x) q(x)的编码来编码实际分布为 p ( x ) p(x) p(x)的信息的信息熵/平均编码长度,表示为:
                 E p ( x ) [ l o g ( 1 q ( x ) ) ] = ∑ i = 1 n p ( x i ) l o g ( 1 q ( x i ) ) E_{p(x)}[log(\frac{1}{q(x)})]=\sum_{i=1}^np(x_i)log(\frac{1}{q(x_i)}) Ep(x)[log(q(x)1)]=i=1np(xi)log(q(xi)1)
  根据5.2可知交叉熵=信息熵+相对熵,在信息x的分布确定的情况下,信息熵 E p ( x ) [ l o g ( 1 p ( x ) ) ] E_{p(x)}[log(\frac{1}{p(x)})] Ep(x)[log(p(x)1)]为定值,交叉熵与相对熵等效。

5.4 图形分类任务及交叉熵损失函数

  图像分类任务中,训练集中图像为 x x x,图像类别的分布为 p ( x ) p(x) p(x),模型对于输入图像 x x x的类别预测分布为 q ( x ) q(x) q(x),学习目标为两个分布尽量接近,即相对熵最小,由于训练集每个样本的类别是确定的,所以训练集样本的信息熵是定值,求相对熵最小也就是求交叉熵最小,因此以交叉熵为损失函数。
  交叉熵损失函数表示为:
       l o s s = ∑ k = 1 N ∑ i = 1 n p ( x k i ) l o g ( 1 q ( x k i ) ) loss=\sum_{k=1}^N\sum_{i=1}^np(x_{ki})log(\frac{1}{q(x_{ki})}) loss=k=1Ni=1np(xki)log(q(xki)1) q ( x k i ) q(x_{ki}) q(xki)表示模型预测第 k k k个样本属于第 i i i个类别的概率。
  假设训练集中第k个样本属于第c类,则 ∑ i ≠ c p ( x k i ) = 0 , p ( x k c = 1 ) \sum_{i\neq c}p(x_{ki})=0,p(x_{kc}=1) i̸=cp(xki)=0,p(xkc=1),所以上述损失函数可化简为:
       l o s s = − ∑ k = 1 N l o g ( q ( x k c ) ) loss=-\sum_{k=1}^Nlog(q(x_{kc})) loss=k=1Nlog(q(xkc))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值