【the EM algorithm】Jensen不等式

1. 凸函数

设f 是定义于为实数的函数,如果对于所有实数x,,那么f 是凸函数。

当x是向量时,如果Hessian Matrix(海森矩阵)H是半正定的() ,那么f是凸函数。

如果或者,那么称f 是严格凸函数。

1.1 半正定矩阵

正定矩阵
正定矩阵的判定:
判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。
判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。
判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。
正定矩阵的性质:
1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即 |A|≠0。
2.正定矩阵的任一主子矩阵也是正定矩阵。
3.若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为 正定矩阵的乔列斯基(Cholesky)分解。
4.若A为n阶正定矩阵,则A为n阶可逆矩阵。

半正定矩阵:
对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。
定义:设A是实对称矩阵。如果对任意的实非零列矩阵,就称A为半正定矩阵。

1.2 Hessian矩阵

是一个多元函数的二阶偏导数构成的方正,描述了函数的局部曲率。常用于牛顿法解决优化问题。

定义

对于一个实值多元函数
,如果函数
的二阶 偏导数 都存在,则定义
的海森矩阵为

其中
表示对第
个变量的微分算子,
。那么,
的海森矩阵即

多元函数极值的判定

如果实值多元函数
二阶连续可导,并且在临界点
(其中
,并且
已知)处梯度(一阶导数)等于0,即
为驻点。仅通过一阶导数无法判断在临界点
处是极大值还是极小值。
点处的海森矩阵为
。由于
点处连续,所以
是一个
的对称矩阵。对于
,有如下结论:
  • 如果H(M)是正定矩阵,则临界点M处是一个局部的极小值。
  • 如果H(M)是负定矩阵,则临界点M处是一个局部的极大值。
  • 如果H(M)是不定矩阵,则临界点M处不是极值。

2. Jensen不等式

 Jensen不等式表述如下:

     如果f是凸函数,X是随机变量,那么

      

      特别地,如果f是严格凸函数,那么clip_image012当且仅当clip_image014,也就是说X是常量。这里我们将clip_image016简写为clip_image018

      如果用图表示会很清晰:

      clip_image019

      图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到clip_image010[1]成立。

      当f是(严格)凹函数当且仅当-f是(严格)凸函数。

      Jensen不等式应用于凹函数时,不等号方向反向,也就是clip_image021


参考资料

正定矩阵

半正定矩阵

海森矩阵

(EM算法)The EM Algorithm

大数据经典算法EM算法 讲解


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 变分不等式问题可以表示为: $$u \in K, \quad (u - v, w - u) \geq 0, \quad \forall w \in K$$ 其中,$K$ 是一个非空的封闭凸集,$(\cdot, \cdot)$ 表示内积。变分不等式问题在优化和偏微分方程中都有广泛的应用。 The proximal point algorithm 是一种迭代算法,用于解决凸优化问题。它的基本思想是在每次迭代中,将当前点映射到封闭凸集 $K$ 的最近点,然后根据一个步长参数来更新解的位置。 对于变分不等式问题,可以使用 The proximal point algorithm 来求解。具体步骤如下: 1. 选择一个初始点 $u_0 \in K$。 2. 对于每个迭代 $k \geq 0$,计算 $$v_k = u_k - \frac{1}{L} \nabla f(u_k)$$ 其中 $L$ 是一个正的 Lipschitz 常数,$\nabla f(u_k)$ 是目标函数 $f(u)$ 在 $u_k$ 处的梯度。 3. 将 $v_k$ 映射到 $K$ 的最近点 $u_{k+1}$,即 $$u_{k+1} = \operatorname{Proj}_K(v_k)$$ 其中 $\operatorname{Proj}_K$ 是 $K$ 的投影算子。 4. 重复步骤 2 和 3,直到满足某个收敛准则。 在变分不等式问题中,目标函数可以定义为 $f(u) = \frac{1}{2} \|u - v\|^2$,其中 $v$ 是给定的向量。此时,梯度可以计算为 $\nabla f(u) = u - v$。投影算子可以使用一些已知的算法来计算,例如使用近似算法来计算 $K$ 中最近点,或使用线性规划算法来计算最近点。 使用 The proximal point algorithm 求解变分不等式问题的优点是它的收敛速度通常很快,并且可以处理一些复杂的凸优化问题。 ### 回答2: 变分不等式问题是一类重要的数学问题,其中涉及到求解最优解的过程。利用The proximal point algorithm(近端点算法)可以较好地解决这类变分不等式问题。 The proximal point algorithm是一种迭代算法,它通过近端映射来逼近最优解。算法的基本思想是通过不断迭代,使得每次迭代的解逐渐接近最优解。 具体而言,在利用The proximal point algorithm求解变分不等式问题时,我们首先需要定义一个特定的函数,称为近端映射。该映射用于将当前的解投影到最优解的近似点。 接着,我们按照以下步骤执行The proximal point algorithm: 1. 初始化解。从一个初始点开始进行迭代求解。 2. 迭代更新。通过迭代更新当前的解,逐渐逼近最优解。每次迭代时,我们将当前解输入近端映射,并将返回的近似最优解作为下一次迭代的初始解。 3. 停止条件。设置迭代的停止条件,例如设定最大迭代次数或目标误差限度。 通过以上步骤的迭代求解过程,我们可以得到变分不等式问题的近似最优解。 总的来说,利用The proximal point algorithm可以较好地求解变分不等式问题。它通过近端映射来逼近最优解,并通过迭代更新方法逐渐逼近最优解。通过合理设置停止条件,我们可以得到一个较接近最优解的解。 ### 回答3: 变分不等式问题通常可以通过使用The proximal point算法进行求解。该算法是一种迭代算法,主要用于求解凸优化问题。下面我们来看一下如何利用该算法来求解变分不等式问题。 首先,我们需要将变分不等式问题转化为一个等价的优化问题。假设我们的变分不等式问题是要求解一个变量x,使得某个函数f(x)满足不等式约束g(x)≥0。我们可以将这个问题转化为以下的优化问题:求解min f(x) + Φ(x),其中Φ(x)是一个指标函数,满足当g(x)≥0时Φ(x)=0,否则Φ(x)=∞。 然后,我们可以使用The proximal point算法来求解这个优化问题。算法的迭代步骤如下: 1. 初始化变量x0和迭代步长t。 2. 根据当前的xk和t,计算下一个迭代值xk+1 = prox[tΦ](xk - t∇f(xk)),其中prox[tΦ](z)表示proximal operator,用于计算一个满足Φ(x)≥0的变量z的最小近似值。 3. 如果迭代的误差满足某个停止准则,则停止迭代;否则返回第2步。 在每一步迭代过程中,我们都通过proximal operator将当前解xk校正为满足约束条件的下一个解xk+1。这个校正过程是通过将当前解xk与关于Φ(x)的泰勒展开进行迭代校正来完成的。由于proximal operator的存在,保证了我们每一步迭代都满足约束条件。 总结一下,通过使用The proximal point算法,我们可以将变分不等式问题转化为一个等价的优化问题,并通过迭代校正的方式逐步逼近最优解。这种算法具有较好的鲁棒性和收敛性,可以有效地求解变分不等式问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值