随机森林简介

本文介绍了随机森林,一种基于监督学习的算法,通过集成多个决策树来解决分类和回归问题。它通过随机选取样本和特征降低过拟合风险,在数据挖掘、计算机视觉和NLP等领域有广泛应用。预测过程中,通过投票或平均决策树结果得到最终输出。
摘要由CSDN通过智能技术生成

1.简介

介绍:

随机森林是一种监督式学习算法,适用于分类和回归问题,当建立好多棵决策树,即可将其集成为一个随机森林。对于分类问题,通过投票方式来确定最终的分类结果,对于回归问题,通过平均预测结果来求解最终的输出结果。它可以用于数据挖掘,计算机视觉,自然语言处理等领域。随机森林是在决策树的基础上构建的。随机森林的重要特点是,每个子集都是通过随机选择的样本和随机选择的特征属性建立的。这种随机化可以减少决策树对训练数据的敏感性,从而防止过拟合。

原理:

随机森林是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类,然后看看哪一类被选择最多,就预测这个样本为那一类。

步骤

1.从训练数据集中随机选择一个子集,同时随机选择其中的一些特征属性。

2.建立一个决策树模型,将该子集和特征属性用于训练模型。

3.重复以上两个步骤,直到建立了指定数量的决策树。

4.当输入未知数据时,对于每个决策树进行预测,然后根据决策树的预测结果,采用投票或平均的方式得到最终预测结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值