Clark变换与Park(派克)变换

本文介绍了Clark变换和Park变换的基本原理及其应用。Clark变换用于将三相静止坐标系下的信号转换为两相静止坐标系;Park变换则进一步将信号从两相静止坐标系转换到同步旋转坐标系。文中还提供了变换矩阵的具体形式及逆变换过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

clark变换:将abc 变换到 静止 αβ α β 坐标系下。
Park变换:将abc 变换到 旋转 dq d q 坐标系下。

这里写图片描述
记三相对称电压如下:

Ua=Ub=Uc=VmcosωtVmcos(ωt23π)Vmcos(ωt+23π) U a = V m cos ⁡ ω t U b = V m cos ⁡ ( ω t − 2 3 π ) U c = V m cos ⁡ ( ω t + 2 3 π )

如图所示,将它们投影到 αβ α β 轴上,有:


Clark transformation 3s2s 3 s − 2 s (仅考虑三相三线制情形,零序分量被忽略,详细推导可参考陈伯时《电力拖动自动控制系统-运动控制系统》第三版 P263)

[UαUβ]=m[1012321232]UaUbUc [ U α U β ] = m ∗ [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ U a U b U c ]

m=23 m = 2 3 ,变换前后,功率不变。又称为: Concordia变换
m=23 m = 2 3 , 变换前后,幅值不变。


Inverse Clark transformation 2s3s 2 s − 3 s

UaUbUc=m1121203232[UαUβ] [ U a U b U c ] = m ′ [ 1 0 − 1 2 3 2 − 1 2 − 3 2 ] [ U α U β ]

m=23 m ′ = 2 3 ,变换前后,功率不变。
m=1 m ′ = 1 ,变换前后,幅值不变。


Park transformation 3s-3r
恒幅值:

UdUqU0=23cosθsin(θ)1/2cos(θ2π/3)sin(θ2π/3)1/2cos(θ+2π/3)sin(θ+2π/3)1/2UaUbUc [ U d U q U 0 ] = 2 3 ∗ [ c o s θ c o s ( θ − 2 π / 3 ) c o s ( θ + 2 π / 3 ) − s i n ( θ ) − s i n ( θ − 2 π / 3 ) − s i n ( θ + 2 π / 3 ) 1 / 2 1 / 2 1 / 2 ] [ U a U b U c ]


inverse Park transformation 3r-3s
恒幅值:

UaUbUc=cosθcos(θ2π/3)cos(θ+2π/3)sin(θ)sin(θ2π/3)sin(θ+2π/3)111UdUqU0 [ U a U b U c ] = [ c o s θ − s i n ( θ ) 1 c o s ( θ − 2 π / 3 ) − s i n ( θ − 2 π / 3 ) 1 c o s ( θ + 2 π / 3 ) − s i n ( θ + 2 π / 3 ) 1 ] [ U d U q U 0 ]


从Clark变换 到Park变换,可由一个旋转变换连接:

Sαβ0/dq0=cosθsinθ0sinθcosθ0001 S α β 0 / d q 0 = [ c o s θ s i n θ 0 − s i n θ c o s θ 0 0 0 1 ]

Tabc/dq0=Tabc/αβ0Sαβ0/dq0 T a b c / d q 0 = T a b c / α β 0 ∗ S α β 0 / d q 0

派克变换Parker Transformation),通常指的是在计算机图形学或图像处理领域中的某些特定转换技术。尽管具体的“Parker Transformation”可能并未广泛提及于标准文献中,但从上下文中可以推测它可能图像配准、坐标变换或其他形式的数据映射有关[^1]。 以下是关于派克变换概念及其潜在实现方法的解释: ### 派克变换的核心理念 派克变换是一种用于解决几何校正和图像对齐问题的技术之一。它的主要目标是对输入数据进行某种形式的空间变换,使得输出能够满足特定的需求或条件。这种变换常被应用于以下场景: - **图像配准**:通过对两幅或多幅图像之间的空间关系建模来完成精确对齐[^2]。 - **纹理映射**:将二维平面投影到三维模型表面的过程中可能会用到类似的变换逻辑。 具体而言,在实际应用过程中,派克变换可以通过矩阵运算或者插值算法等方式加以实现。下面给出一种简单的线性变换例子作为参考: ```python import numpy as np def parker_transformation(input_image, theta=30): """ 实现一个假设版本的 Parker 变换, 主要作用是旋转和平移给定图片。 参数: input_image (np.ndarray): 输入图像数组 theta (float): 旋转角度,默认为30度 返回: transformed_image (np.ndarray): 转换后的图像 """ height, width = input_image.shape[:2] # 构造仿射变换矩阵 rotation_matrix = cv2.getRotationMatrix2D((width / 2, height / 2), theta, scale=1) # 应用仿射变换 transformed_image = cv2.warpAffine(input_image, rotation_matrix, (width, height)) return transformed_image ``` 上述代码片段展示了一个简化版的派克变换函数定义方式——通过 OpenCV 的 `getRotationMatrix2D` 和 `warpAffine` 方法实现了基本的旋转变换操作。 需要注意的是,“Parker Transformation”的确切含义取决于具体研究背景下的定义差异。如果存在更专业的描述,则应优先采纳权威资料说明的内容。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值