FOC控制原理——Clark变换和Park变换

FOC控制原理——Clark变换和Park变换

Clark变换

原理

Clark变换就是把三向坐标系变成直角坐标系

image-20220323153620081

已知三向坐标系 ( I a , I b , I c ) (I_a,I_b,I_c) (Ia,Ib,Ic) ,这三个基向量不是正交的,所以可以将其正交化为一个直角坐标系,命名为 α − β \alpha-\beta αβ 坐标系,变换公式为:
{ I α = I a − I b cos 60 − I c cos 60 = I a − 1 2 I b − 1 2 I c I β = I b cos 30 − I c cos 30 = 3 2 I b − 3 2 I c \left\{\begin{array}{l} \begin{aligned} I_\alpha&=I_a-I_b\text{cos}60-I_c\text{cos}60 \\ &=I_a-\frac{1}{2}I_b-\frac{1}{2}I_c \end{aligned} \\ \begin{aligned} I_\beta&=I_b\text{cos}30-I_c\text{cos}30 \\ &=\frac{\sqrt3}{2}I_b-\frac{\sqrt3}{2}I_c \end{aligned} \end{array}\right. Iα=IaIbcos60Iccos60=Ia21Ib21IcIβ=Ibcos30Iccos30=23 Ib23 Ic

可以将其整理成矩阵形式:
[ I α I β ] = [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ I a I b I c ] \left[\begin{array}{c} I_{\alpha} \\ I_{\beta} \end{array}\right]= \left[\begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{array}\right] \left[\begin{array}{c} I_{a} \\ I_{b} \\ I_{c} \end{array}\right] [IαIβ]=[102123 2123 ]IaIbIc
由基尔霍夫电流定律, I a + I b + I c = 0 I_a+I_b+I_c=0 Ia+Ib+Ic=0 ,故也可整理为:
{ I α = 3 2 I a I β = 3 2 I a + 3 I b \left\{\begin{array}{l} I_\alpha=\frac{3}{2}I_a \\ I_\beta=\frac{\sqrt3}{2}I_a+\sqrt3I_b \end{array}\right. {Iα=23IaIβ=23 Ia+3 Ib

反Clark变换则将三向信号转换为两向信号,根据上式可以解得
[ I a I b I c ] = [ 2 3 0 − 1 3 1 3 − 1 3 − 1 3 ] [ I α I β ] \left[\begin{array}{c} I_{a} \\ I_{b} \\ I_{c} \end{array}\right]= \left[\begin{array}{ccc} \frac{2}{3} & 0 \\ -\frac{1}{3} & \frac{1}{\sqrt{3}} \\ -\frac{1}{3} & -\frac{1}{\sqrt{3}} \end{array}\right] \left[\begin{array}{c} I_{\alpha} \\ I_{\beta} \end{array}\right] IaIbIc=32313103 13 1[IαIβ]
也可通过计算Clark变换常数矩阵的伪逆来确定反Clark变换的常数矩阵(使用MATLAB中的 pinv()函数)

Simulink仿真

image-20220323152939436

image-20220323150553068

通过图像可以看到,输入信号的幅值为1,经过Clark变换后的图像幅值变为1.5,即变为 3 2 \frac{3}{2} 23 倍;进行反Clark变换后幅值又变为1.5,即变为 2 3 \frac{2}{3} 32 倍。所以要进行等幅值变换。修改仿真:

image-20220323153007076

可以看到,经过等幅值变换后,幅值统一为1。

image-20220323151818659

Park变换

原理

Park变换可以将正弦变量线性化

α − β \alpha-\beta αβ 坐标系旋转 θ \theta θ 度变为 d − q d-q dq 坐标系, d d d 指向转子中心, q q q 指向切线方向,其中 θ \theta θ 是转子当前的角度。如下图

img

也就是说 d − q d-q dq 坐标系始终跟着转子旋转。

则可以写出
{ I d = I α cos ⁡ ( θ ) + I β sin ⁡ ( θ ) I q = − I α sin ⁡ ( θ ) + I β cos ⁡ ( θ ) \left\{\begin{array}{l} I_{d}=I_{\alpha} \cos (\theta)+I_{\beta} \sin (\theta) \\ I_{q}=-I_{\alpha} \sin (\theta)+I_{\beta} \cos (\theta) \end{array}\right. {Id=Iαcos(θ)+Iβsin(θ)Iq=Iαsin(θ)+Iβcos(θ)
整理成矩阵形式
[ I d I q ] = [ cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ] [ I α I β ] \left[\begin{array}{l} I_{d} \\ I_{q} \end{array}\right]= \left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right] \left[\begin{array}{l} I_{\alpha} \\ I_{\beta} \end{array}\right] [IdIq]=[cosθsinθsinθcosθ][IαIβ]
所以如果 d d d 轴为0,则功率全部输出在 q q q 轴上。

同理,可以求得反Park变换
[ I α I β ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ I d I q ] \left[\begin{array}{l} I_{\alpha} \\ I_{\beta} \end{array}\right]= \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] \left[\begin{array}{l} I_{d} \\ I_{q} \end{array}\right] [IαIβ]=[cosθsinθsinθcosθ][IdIq]

Simulink仿真

在Clark变换和等幅值变换的基础上添加Park变换

image-20220323160805870

关注Park部分

image-20220323160942614

  • 41
    点赞
  • 282
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

范子琦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值