题目:
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Now your job is to find the total Hamming distance between all pairs of the given numbers.
Example:
Input: 4, 14, 2 Output: 6 Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just showing the four bits relevant in this case). So the answer will be: HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.
Note:
- Elements of the given array are in the range of
0
to10^9
- Length of the array will not exceed
10^4
.
题解:第一次写用最笨的方法,调用一个函数H(x.y)返回x和y的Hamming distance,然后遍历两次nums数组,求和,超时,无果,然后寻找规律,知原数组用二进制表示时,每一位上的距离即是1的个数乘以0的个数,然后一直右移一位遍历一遍相加即可。
代码:
class Solution {
public:
int totalHammingDistance(vector<int>& nums){
int total = 0;
int n=nums.size();
for (int i=0;i<32;i++)
{
int counter = 0;
for ( int j=0;j<n;j++)
{
counter += (nums[j] >> i) &1;
}
total += counter*(n - counter);
}
return total;
}
};