SVD电影推荐简介

本文介绍了SVD方法在电影推荐系统中的应用,通过将用户-电影评分矩阵分解为用户因子矩阵和物品因子矩阵,从而进行推荐。文章讨论了影响评分的因素,如用户口味、评分标准和电影质量,并解释了如何通过随机梯度下降优化模型参数,以及在实现过程中需要注意的要点。
摘要由CSDN通过智能技术生成

SVD电影推荐简介

(参考http://www.cnblogs.com/FengYan/archive/2012/05/06/2480664.html

 

利用SVD方法进行推荐,其实就是对用户-电影评分矩阵进行降维。SVD的想法抽象点来看就是将一个NM列的评分矩阵RR[u][i]代表第u个用户对第i个物品的评分),分解成一个NF列的用户因子矩阵PP[u][k]表示用户u对因子k的喜好程度)和一个MF列的物品因子矩阵</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值