主成分分析法PCA特征降维

PCA特征降维matlab代码

clc;
clear all;
 %x = xlsread('D:\实验项目\程序\肌电信号分析\腕关节\绝对值均值特征2.xlsx', 'sheet1', 'B2:M140');
 %x = xlsread('C:\Users\80590\Desktop\BP分类\腕关节特征2.xlsx', 'sheet2', 'A2:I114');
 x = xlsread('C:\Users\80590\Documents\MATLAB\BP分类\测试\两次实验合并特征值1', 'sheet1', 'A2:AR165');
 % x=[1.2,3,-1.1,17;
%     1.5,5,-3,22;
%     1.3,4.0,-2,19;
%     0.7,3,-2.3,11
%     1,4,-1.2,20.8];
stdr=std(x);                %求各变量的标准差;
[n,m]=size(x);               %矩阵的行与列
sddata=x./stdr(ones(n,1),:);         %标准化变换
[p,princ,egenvalue]=pca(sddata);  %调用主成分
%p=p(:,1:3);                          %输出前3主成分系数;
%sc=princ(:,1:3);                       %3主成分量;
p=p(:,1:7);                          %输出前7主成分系数;
sc=princ(:,1:7);                     %7主成分量;
egenvalue;                              %相关系数矩阵的特征值,即各主成分所占比例;
per=100*egenvalue/sum(egenvalue);       %各个主成分所占百分比;
figure(1);
set(gcf,'color','w');
pareto(per);
ylabel('Votes');
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值