csp202312-2

题目

题目背景
质数(又称“素数”)是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

问题描述
小 P 同学在学习了素数的概念后得知,任意的正整数 n 都可以唯一地表示为若干素因子相乘的形式。如果正整数 n 有 m 个不同的素数因子 p1,p2,⋯,pm,则可以表示为:n=p1t1×p2t2×…×pmtm

小 P 认为,每个素因子对应的指数 ti 反映了该素因子对于 n 的重要程度。现设定一个阈值 k,如果某个素因子 pi 对应的指数 ti 小于 k,则认为该素因子不重要,可以将 pi^ti 项从 n 中除去;反之则将 pi^ti 项保留。最终剩余项的乘积就是 n 简化后的值,如果没有剩余项则认为简化后的值等于 1。

试编写程序处理 q 个查询:

每个查询包含两个正整数 n 和 k,要求计算按上述方法将 n 简化后的值。
输入格式
从标准输入读入数据。

输入共 q+1 行。

输入第一行包含一个正整数 q,表示查询的个数。

接下来 q 行每行包含两个正整数 n 和 k,表示一个查询。

输出格式
输出到标准输出。

输出共 q 行。

每行输出一个正整数,表示对应查询的结果。

样例输入

3
2155895064 3
2 2
10000000000 10

样例输出

2238728
1
10000000000

代码

#include<iostream>
#include<map>//哈希表存储因子
#include<math.h>
using namespace std;
int main()
{
	//func(max_num);
	int q,k;
	long long n;
	cin>>q;
	while(q > 0)
	{
		long long ans=1;
		cin>>n>>k;
		map<long long,int>a;
		for(long long i =2;i*i<=n;i++)
		{
			while(n%i==0)
			{
				a[i]++;
				n/=i;
			}
		}
		for(auto s:a)
		{
			if(s.second>=k)
			 ans*=pow(s.first,s.second);	
		}
		cout<<ans<<endl;
		q--;
	}	
	return 0; 
} 

优化

  1. 划定边界时候可以用i<n/i
  2. pow可用快速幂代替快速幂
//非递归快速幂
int qpow(int a, int n){
    int ans = 1;
    while(n){
        if(n&1)        //如果n的当前末位为1
            ans *= a;  //ans乘上当前的a
        a *= a;        //a自乘
        n >>= 1;       //n往右移一位
    }
    return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值