题目
问题描述
顿顿总共选中了 n 块区域准备开垦田地,由于各块区域大小不一,开垦所需时间也不尽相同。据估算,其中第 i 块(1≤i≤n)区域的开垦耗时为 ti 天。这 n 块区域可以同时开垦,所以总耗时 tTotal 取决于耗时最长的区域,即:tTotal=max{t1,t2,⋯,tn}
为了加快开垦进度,顿顿准备在部分区域投入额外资源来缩短开垦时间。具体来说:
在第 i 块区域每投入 ci 单位资源,便可将其开垦耗时缩短 1 天;
耗时缩短天数以整数记,即第 i 块区域投入资源数量必须是 ci 的整数倍;
在第 i 块区域最多可投入 ci×(ti−k) 单位资源,将其开垦耗时缩短为 k 天;
这里的 k 表示开垦一块区域的最少天数,满足 0<k≤min{t1,t2,⋯,tn};换言之,如果无限制地投入资源,所有区域都可以用 k 天完成开垦。
现在顿顿手中共有 m 单位资源可供使用,试计算开垦 n 块区域最少需要多少天?
输入格式
从标准输入读入数据。
输入共 n+1 行。
输入的第一行包含空格分隔的三个正整数 n、m 和 k,分别表示待开垦的区域总数、顿顿手上的资源数量和每块区域的最少开垦天数。
接下来 n 行,每行包含空格分隔的两个正整数 ti 和 ci,分别表示第 i 块区域开垦耗时和将耗时缩短 1 天所需资源数量。
输出格式
输出到标准输出。
输出一个整数,表示开垦 n 块区域的最少耗时。
样例
输入
4 9 2
6 1
5 1
6 2
7 1
输出
5
输入
4 30 2
6 1
5 1
6 2
7 1
输出
2
代码
#include<iostream>
#include<vector>
using namespace std;
int n,k;
int m;//10的9次方,int刚好可以储存下
vector<pair<int,int>>a;
int max_day;
int reach(int mid)
{
int gap=0;
for(const auto p:a)
{
if(p.first>=mid)//是个坑,一旦少了这个条件就会失败,开始以为题目搞被刺
gap+=p.second*(p.first-mid);//后面发现题上说k<=min{t1,t2...}
//但现在验证的这个mid不一定是<=min的
}
return gap<=m;
}
int search()//使用二分法,在最少天数到最大天数之间按顺序找符合的值
{
int l=k,r=max_day;
while(l<r)
{
int mid=(l+r) >> 1;
int judge=reach(mid);
if(judge)//如果可以覆盖资源
{
r=mid;
}
else //如果不能覆盖资源
{
l=mid+1; //从不能满足的天数+1开始搜索
}
}
return l;
}
int main()
{
cin>>n>>m>>k;
int tmp=n;
int i,j;
while(tmp)
{
scanf("%d %d",&i,&j);
max_day=max(max_day,i);
a.push_back(make_pair(i,j));
tmp--;
}
cout<<search();//二分
return 0;
}
差分参考 链接
#include<iostream>
using namespace std;
int n,k,m;
int s[100010];
int main()
{
cin>>n>>m>>k;
int t,c;
int max_day=0;
for(int i =0;i<n;i++)
{
cin>>t>>c;
max_day=max(max_day,t);
s[1]+=c;
s[t+1]-=c;//差分
}
for(int i =1;i<=max_day;i++)
{
s[i]+=s[i-1];
}
int cost=0;
int i =max_day;
while(i>k&&cost+s[i]<=m)
{
cost+=s[i];
i--;
}
cout<<i;
return 0;
}
``