csp202305-2

题目

题目背景
Softmax(𝑄×𝐾𝑇𝑑)×𝑉 是 Transformer 中注意力模块的核心算式,其中 𝑄、𝐾 和 𝑉 均是 𝑛 行 𝑑 列的矩阵,𝐾𝑇 表示矩阵 𝐾 的转置,× 表示矩阵乘法。

问题描述
为了方便计算,顿顿同学将 Softmax 简化为了点乘一个大小为 𝑛 的一维向量 𝑊:
(𝑊⋅(𝑄×𝐾𝑇))×𝑉
点乘即对应位相乘,记 𝑊(𝑖) 为向量 𝑊 的第 𝑖 个元素,即将 (𝑄×𝐾𝑇) 第 𝑖 行中的每个元素都与 𝑊(𝑖) 相乘。

现给出矩阵 𝑄、𝐾 和 𝑉 和向量 𝑊,试计算顿顿按简化的算式计算的结果。

输入格式
从标准输入读入数据。

输入的第一行包含空格分隔的两个正整数 𝑛 和 𝑑,表示矩阵的大小。

接下来依次输入矩阵 𝑄、𝐾 和 𝑉。每个矩阵输入 𝑛 行,每行包含空格分隔的 𝑑 个整数,其中第 𝑖 行的第 𝑗 个数对应矩阵的第 𝑖 行、第 𝑗 列。

最后一行输入 𝑛 个整数,表示向量 𝑊。

输出格式
输出到标准输出中。

输出共 𝑛 行,每行包含空格分隔的 𝑑 个整数,表示计算的结果

样例

输入

3 2
1 2
3 4
5 6
10 10
-20 -20
30 30
6 5
4 3
2 1
4 0 -5

输出

480 240
0 0
-2200 -1100

子任务
70 的测试数据满足:𝑛≤100 且 𝑑≤10;输入矩阵、向量中的元素均为整数,且绝对值均不超过 30。

全部的测试数据满足:𝑛≤104 且 𝑑≤20;输入矩阵、向量中的元素均为整数,且绝对值均不超过 1000。

提示
请谨慎评估矩阵乘法运算后的数值范围,并使用适当数据类型存储矩阵中的整数。

代码

很简单的计算但是对于学完线代一段时间的老东西来说真的太太容易出错了

#include<iostream>
using namespace std;
const int N=10001;//const放开头 
const int D=21;

long long ans[N][D],tmp[N][N];//根据数据范围推算可能要开longlong 
int w[N];
int n,d;
void get(int a[][D])
{
	for(int i = 0;i<n;i++)
	{
		for(int j =0;j<d;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
}
void getvers()
{
	for(int j =0;j<n;j++)
	{
		for(int i = 0;i<d;i++)
		{
		
			printf("%lld ",w[j]*ans[j][i]);
		}	
		printf("\n");
	}
}
int main()
{
	cin>>n>>d;
	int q[n][D],k[n][D],v[n][D];
	get(q);
	get(k);
	get(v);
	for(int i =0;i<n;i++)
	{
		scanf("%d",&w[i]);
		
	}
	
	for(int i = 0;i<d;i++)
	{
		for(int j =0;j<d;j++)
		{
			for(int l=0;l<n;l++)
			{
				tmp[i][j]+=k[l][i]*v[l][j];//小坑,先乘kT和v会计算量更小 
				
			}
		}
	}

	for(int i = 0;i<n;i++)
	{
		for(int j =0;j<d;j++)
		{
			for(int l=0;l<d;l++)
			{
				ans[i][j]+=q[i][l]*tmp[l][j];
				
			}
		}
	}	
	getvers();
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值