4.4 pandas的统计功能

本文详细介绍了Pandas的统计功能,包括数值型特征的统计、类别型特征的描述性统计和如何剔除全为空值或所有元素取值相同的列。通过`dataframe.info()`、`describe()`等方法展示了统计分析的基本操作,以及`value_counts`用于频数统计,同时提供了一个函数用于删除异常数据列。
摘要由CSDN通过智能技术生成

4.4 pandas的统计功能

Pandas拥有一组常用的数学和统计方法,可以对 Series 与 DataFrame 进行快速的描述性统计,如求和、平均数、最大值、方差等,是最基础也是最实用的统计方法。一般来说,这些方法采用轴参数axis,就像NumPy数组的统计方法,但轴可以通过名称或整数来指定,对于DataFrame而言:

  • axis=0,默认,表示按行index统计
  • axis=1,表示按列columns统计

按哪个axis,就是这个axis要动起来(类似被for遍历),其他的axis保持不动

Pandas的axis参数:

1、axis = 0

  • 如果是单行操作,就是指某一行
  • 如果是聚合操作,指的就是跨行

2、axis = 1

  • 如果是单列操作,就是指某一列
  • 如果是聚合操作,指的就是跨列

In [1]:

import numpy as np
import pandas as pd

In [2]:

#读取学生信息
st = pd.read_excel('data/stinfo.xlsx',index_col=0)
st.head(3)

Out[2]:

姓名 学号 出生日期 年龄 籍贯 性别 身高 体重 linux python 网络 数据库 IT基础
0 甲一 50 2001年1月1日 19 福田 172 69 92 90 82 NaN 80
1 乙二 51 1999年2月2日 21 龙岗 180 77 95 88 85 NaN 80
2 丙三 52 2002年3月3日 18 南山 160 49 85 91 93 NaN 80

In [3]:

st.ndim

Out[3]:

2

In [4]:

st.shape

Out[4]:

(11, 13)

In [5]:

st.size

Out[5]:

143

4.4.1 数值型特征的统计

数值型数据的描述性统计主要包括了计算数值型数据的完整情况、最小值、均值、中位数、最大值、四分位数、极差、标准差、方差、协方差和变异系数等。在NumPy库中一些常用的统计学函数如下表所示。

pandas库基于NumPy,自然也可以用这些函数对数据框进行描述性统计。

In [6]:

np.max(st['linux'])#统计linux列的最大值

Out[6]:

98

In [7]:

np.median(st['linux'])#统计linux列的中位数

Out[7]:

85.0

In [8]:

int(np.mean(st['身高']))#统计身高列的均值

Out[8]:

169

In [9]:

np.sort(st['体重'])#体重列排序

Out[9]:

array([48, 49, 50, 53, 56, 63, 69, 70, 75, 77, 82], dtype=int64)
  • Pandas统计函数

Pandas内置很多数学计算方法,如计算均值 ,st['linux技术成绩'].mean()。

In [10]:

st['linux'].mean().astype(int)

Out[10]:

83

In [11]:

st['linux'].max()#统计linux列的最大值

Out[11]:

98

In [12]:

st['linux'].median()#统计linux列的中位数

Out[12]:

85.0

pandas提供的方法describe()能够一次性得出dataframe所有数值型特征的非空值数目、均值、四分位数、标准差等。返回一个有多个行的所有数值列的统计表,每个行是一个统计指标,对我们初步了解数据还是很有作用。 

In [13]:

st.describe()

Out[13]:

学号 年龄 身高 体重 linux python 网络 数据库 IT基础
count 11.000000 11.000000 11.000000 11.000000 11.000000 11.000000</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chenos121

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值