【大数据处理】键值对数据库Leveldb

Leveldb

  1. Leveldb介绍
    Leveldb是一个google实现的非常高效的(key-value)数据库,能够支持十亿级别的数据量了。 在这个数量级别下还有着非常高的性能,主要归功于它的良好的设计。
    LevelDB 是单进程的服务,性能非常之高,在一台4核Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。
  2. Python Leveldb
    Python有实现了leveldb,在这里可以下载
  3. Python Leveldb 的安装
    ubuntu下安装leveldb非常的简单
sudo pip install leveldb

即可搞定。
4. 使用也很简单,其函数和参数也就那么几个

import leveldb

# 注意需要先新建文件
import os
mkdir('./db')
db = leveldb.LevelDB('./db')

# single put
db.Put('hello', 'world')

print db.Get('hello')

# single delete
db.Delete('hello')

#下面这一句会报错。
print db.Get('hello')

# multiple put/delete applied atomically, and committed to disk
batch = leveldb.WriteBatch()
batch.Put('hello', 'world')
batch.Put('hello again', 'world')
batch.Delete('hello)

db.Write(batch, sync= True)

实际中的应用:

我是学习和使用caffe才知道有leveldb 这个东西的,比leveldb更高级的有LMDB,不过我看了下其文档,比leveldb复杂多了,先学习leveldb,有时间再学习leveldb。
在caffe中没有python的leveldb 示例,都是用C++直接将图片转化leveldb,之前仿照着写一个将自己的图片保存为leveldb,训练之后发现错误,而且找不到原因,所以就找了python的实现,毕竟python找错误比较简单一些。

在caffe中,需要准备训练数据,其中有多种数据的保存格式,比较高效的是leveldb和lmdb,比较低效的hdf5 和直接图像文件。

要将训练数据保存为leveldb或者lmdb,只要把数据转化为键值对即可,即图像为key,标签为value。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值